Внутрипротоковые муцинозные опухоли поджелудочной железы Intraductal mucinous tumors of the pancreas

ISSN 1995-5464 (Print); ISSN 2408-9524 (Online) https://doi.org/10.16931/1995-5464.2025-3-53-62

Внутрипротоковые папиллярные муцинозные неоплазии поджелудочной железы в ассоциации с протоковым раком – две раздельные клинические сущности

Паклина О.В.^{1, 2*}, Носкова К.К.¹, Абрамов И.С.¹, Бодунова Н.А.¹, Савелов Н.А.³

- ¹ ГБУЗ "Московский клинический научный центр им. А.С. Логинова" ДЗ города Москвы; 111123, г. Москва, шоссе Энтузиастов, д. 86, Российская Федерация
- ² ФГБУ "Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского" Минздрава России; 117997, г. Москва, ул. Большая Серпуховская, д. 27, Российская Федерация
- ³ ГБУЗ "Московская городская онкологическая больница № 62" ДЗ города Москвы; 143515, Московская область, городской округ Красногорск, пос. Истра, д. 27, стр. 1-30, Российская Федерация

Цель. Анализ последних взглядов на концепцию злокачественной прогрессии внутрипротоковой папиллярной муцинозной опухоли поджелудочной железы и наиболее значимых перспектив научных исследований в этой области.

Материал и методы. Обзор литературных данных, анализ данных канцер-регистра г. Москвы.

Результаты. Приведены наиболее значимые молекулярно-генетические исследования за последние десятилетия. На примере анализа данных операционного материала по кодам ICD-О г. Москвы за 2023—2024 гг. рассмотрены основные трудности морфологической диагностики внутрипротоковой папиллярной муцинозной опухоли поджелудочной железы с ассоциированной инвазивной карциномой.

Заключение. Геномные изменения во внутрипротоковой папиллярной муцинозной опухоли поджелудочной железы как фоновые поражения для протокового рака поджелудочной железы, обусловливающие их генетическую гетерогенность, имеют большое клиническое значение для понимания поликлональной теории развития рака, поиска новых мишеней и подходов в терапии. Ассоцированный инвазивный компонент во внутрипротоковой папиллярной муцинозной опухоли поджелудочной железы, согласно своему молекулярному профилю, чаще является генетически независимым.

Ключевые слова: поджелудочная железа; внутрипротоковая папиллярная муцинозная опухоль; *IPMN*-ассоциированная карцинома; канцерогенез; поликлональная теория

Ссылка для цитирования: Паклина О.В., Носкова К.К., Абрамов И.С., Бодунова Н.А., Савелов Н.А. Внутрипротоковые папиллярные муцинозные неоплазии поджелудочной железы в ассоциации с протоковым раком — две раздельные клинические сущности. *Анналы хирургической гепатологии*. 2025; 30 (3): 53—62. https://doi.org/10.16931/1995-5464.2025-3-53-62

Авторы заявляют об отсутствии конфликта интересов.

Intraductal papillary mucinous neoplasms of the pancreas associated with ductal carcinoma as two distinct clinical entities

Paklina O.V.^{1,2*}, Noskova K.K.¹, Abramov I.S.¹, Bodunova N.A.¹, Savelov N.A.³

- ¹ Moscow Clinical Scientific Center named after A.S. Loginov; 86, Sh. Entuziastov, Moscow, 111123, Russian Federation
- ² A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation; 27, str. Bolshaya Serpukhovskaya, Moscow, 115093, Russian Federation
- ³ Moscow City Oncology Hospital No. 62 of the Moscow Healthcare Department; 27, bld. 1-30, Istra settlement, Krasnogorsk urban district, Moscow region, 143515, Russian Federation

Aim. To analyze current perspectives on the concept of malignant progression in intraductal papillary mucinous neoplasms (IPMNs) of the pancreas and to outline the most prospective research trends in this area.

Materials and Methods. A literature review and an analysis of data from the cancer registry of Moscow were conducted.

Results. The paper summarizes key molecular genetic studies from recent decades. Using surgical specimen data coded according to ICD-O in Moscow for the years 2023–2024, the main challenges in the histopathological diagnosis of IPMN with associated invasive carcinoma are discussed.

Conclusion. Genomic alterations in IPMNs of the pancreas, as background lesions for pancreatic ductal adenocarcinoma, reflect their genetic heterogeneity and carry significant clinical implications for understanding the polyclonal theory of carcinogenesis, as well as for identifying novel therapeutic targets and approaches. The invasive component associated with IPMN is frequently genetically independent based on its molecular profile.

Keywords: pancreas; intraductal papillary mucinous neoplasm; IPMN-associated carcinoma; carcinogenesis; polyclonal theory **For citation:** Paklina O.V., Noskova K.K., Abramov I.S., Bodunova N.A., Savelov N.A. Intraductal papillary mucinous neoplasms of the pancreas associated with ductal carcinoma as two distinct clinical entities. *Annaly khirurgicheskoy gepatologii* = *Annals of HPB surgery.* 2025; 30 (3): 53–62. https://doi.org/10.16931/1995-5464.2025-3-53-62 (In Russian)

The authors declare no conflict of interest.

Введение

Внутрипротоковая папиллярная муцинозная неоплазия (внутрипротоковая папиллярная муцинозная опухоль, ВПМО, IPMN) — эпителиальное новообразование размером >5 мм, развивающееся в протоке поджелудочной железы (ППЖ) и (или) его ветвях. Гистологически ВПМО представлена внутрипротоковыми сосочковыми (папиллярными) структурами, выстланными муцин-продуцирующим эпителием. По гистологическому строению ВПМО разделяют на желудочный (70%) тип, панкреатобилиарный (20%) и кишечный (10%). В последней классификации опухолей желудочно-кишечного такта ВОЗ (2019) в ВПМО также выделяют 2 значимые группы - опухоли с дисплазией эпителия низкой и высокой степени (low-grade, LG; highgrade, HG). Согласно классификации ICD-O ВОЗ (2019) ВПМО кодируют следующим образом: 8453/0 ВПМО с дисплазией LG; 8453/2 ВПМО с дисплазией НG; 8453/3 ВПМО с ассоциированной инвазивной карциномой. ВПМО LG рассматривают как фоновое предраковое заболевание с соответствующими клиническими подходами, тогда как ВПМО НG, по сути, является карциномой in situ.

Особый подход — к ВПМО с ассоциированной инвазивной карциномой, поскольку стадирование и прогноз заболевания согласно МКБ-10 базируются на размере инвазивного компонента опухоли в соответствии с протоколом для классической протоковой аденокарциномы ПЖ [1]. Согласно консенсусу, достигнутому в Вероне, для инвазивного компонента ВПМО определены следующие подстадии: pT1a (\leq 0,5 см), pT1b (0,6—0,9 см) и pT1c (\geq 1 см) [1], которые в дальнейшем включены в классификацию вОЗ 2019 г. [2]. При pT-стадировании учитывают наибольший размер и обязательно описывают характер инвазивного компонента. Эксперты консенсуса подчеркивали, что термина "минимально инва-

зивная ВПМО" необходимо избегать, как и термина "злокачественная IPMN", а категорию "подозрение на инвазию" следует использовать в исключительных ситуациях.

Патогенез

Патогенез ВПМО до сих пор носит предположительный характер, хотя многие исследователи считают, что ВПМО чаще всего развиваются на фоне более мелких (<1 см) внутрипротоковых неопластических поражений, неотличимых от панкреатической интраэпителиальной неоплазии (PanIN) с дисплазией эпителия различной степени. Это заключение сделано по аналогии с другими неоплазиями различных локализаций согласно теории "пошагового" канцерогенеза, поскольку генетические изменения, отвечающие за формирование BПМО, встречаются и в PanIN, но с одним существенным отличием - ВПМО часто содержат активирующие мутации в онкогене GNAS и инактивирующие мутации в генесупрессоре RNF 43 [3]. Активирующие мутации GNAS в кодоне 201 обнаруживаются в 50-70% ВПМО, особенно в кишечном подтипе, поэтому мутации GNAS рассматривают как специфические для ВПМО [4]. Ген-супрессор RNF43 соматически мутирован примерно в 50% ВПМО [4, 5]. Помимо GNAS и RNF43 наиболее распространенными являются также мутации KRAS, которые выявляют в 60-80% ВПМО [6].

Изменения в гене TP53 происходят в 10-40% ВПМО HG, а также в 40-60% инвазивных карцином, ассоциированных с ВПМО [7], что указывает на его роль в злокачественной прогрессии, как и потери экспрессии SMAD4 [8].

Макро- и микроскопические изменения при ВПМО

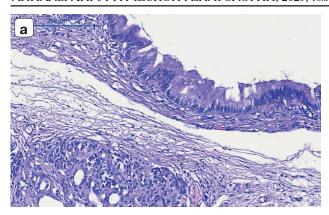
В зависимости от вовлечения в процесс протоков выделяют 3 макроскопических типа ВПМО: 1- главный протоковый тип, при котором вовле-

кается только ППЖ или санториниев проток; 2 — тип из боковых ветвей, вовлечены только ветви ППЖ; 3 — смешанный тип. Опухоли 1-го типа в основном локализуются в головке поджелудочной железы (ПЖ), иногда распространяются на весь ППЖ, включая ампулу фатерова сосочка. ППЖ, как правило, >5 мм, заполнен муцином и выстлан мягкими, рыхлыми сосочками.

ВПМО боковых ветвей чаще всего развиваются в крючковидном отростке и представляют собой периферические многокамерные муцинозные кисты в нативной паренхиме железы. Неоплазии >30 мм подозрительны в отношении дисплазии HG, а ассоциированные карциномы – обычно плотные узлы, прилегающие к кистозно-расширенным протокам; некоторые инвазивные карциномы развиваются в других участках железы на определенном расстоянии от ВПМО. Микроскопически большинство ВПМО представлены цилиндрическим муцинпродуцирующим однослойным однорядным эпителием с различной степенью атипии. Размер сосочков варьирует от миллиметров до нескольких сантиметров. Характеристика различных гистологических типов отражена в табл. 1.

Дифференциальная диагностика ВПМО не представляет значительных трудностей, ее проводят с внутрипротоковыми тубулопапиллярными и онкоцитарными опухолями как отдельными сущностями, имеющими не только гистологические, фенотипические различия, но и другие молекулярные нарушения. Это стало причиной их выделения в последней классификации опухолей ЖКТ (ВОЗ, 2019) как самостоятельных нозологических форм. Иммуногистохимический характер экспрессии муцина (МUС1, MUC5AC, MUC6), а также CDX2 (маркер кишечной диф-

ференцировки) помогает различать морфологические подтипы ВПМО, хотя часто отмечают их коэкспрессию (см. табл. 1).


Одним из наиболее важных гистологических параметров является степень дисплазии внутрипротокового эпителия. При ВПМО LG эпителий цилиндрический, муцин-продуцирующий, однослойный, однорядный. Ядерный полиморфизм минимальный, отмечают некоторую скученность ядер (рис. 1а). Дисплазия НС проявляется выраженным ядерным полиморфизмом, нарушением поляризации ядер, наличием фигур митоза. Возможно слущивание опухолевых клеток (комплексов) в просвет протока (рис. 1б). Дисплазия HG, как правило, при ВПМО ассоциирована с инвазивной карциномой, поэтому интерпретация степени дисплазии эпителия имеет большое значение. ВПМО и инвазивная протоковая карцинома могут развиваться в одной и той же ПЖ. При этом если карцинома развивается в области ВПМО, заболевание трактуют как ВПМО, ассоциированную с инвазивной карциномой. Если карцинома располагается в другой части ПЖ, то заболевание интерпретируют как ВПМО с сопутствующей инвазивной карциномой [9]. Ассоциированная с ВПМО карцинома гистологически чаще представлена двумя типами — коллоидным и тубулярным (панкреатобилиарным). Коллоидная карцинома развивается в ВПМО кишечного типа, тубулярная карцинома, гистологически похожая на обычную протоковую аденокарциному, возникает в связи с ВПМО желудочного или панкреатобилиарного типа.

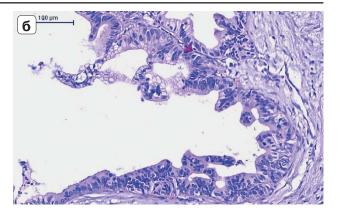
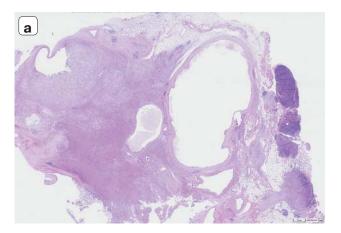

В современных исследованиях есть небольшая путаница в интерпретации ассоциированной и сопутствующей инвазивной карциномы в ПЖ, а также ВПМО с инвазией. Некоторые

Таблица 1. Гистологические типы ВПМО и их фенотипические характеристики **Table 1.** Histological subtypes of intraductal papillary mucinous neoplasms and their phenotypic characteristics

Характеристика	Тип ВПМО			
	желудочный	кишечный	панкреатобилиарный	
Тип поражения протоков	2>>1	1>>2	2>>1	
Тип эпителия	Плоский или папиллярный	Пальцеподобные ворсинки	Смешанные сосочки	
ИГХ, МИС	MUC1-/ MUC2-/ MUC5AC+/ MUC6+/ CDX2-	MUC1-/ MUC2+/ MUC5AC+/ MUC6-/ CDX2+	MUC1+/ MUC2-/ MUC5AC+/ MUC6+/ CDX2-	
Дисплазия	LG>>HG	LG>>HG	HG>>LG	
Частота ассоциированной карциномы, %	15	30–60	60-80	
Преобладающий тип ассоциированной карциномы	Тубулярный (панкреатобилиарный)	Коллоидный	Тубулярный (панкреатобилиарный)	


Примечание: ИГX — иммуногистохимическое исследование; MUC — муцины; CDX-2 — ген транскрипционного фактора каудального типа гомеобокса.

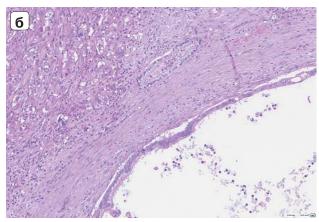


Рис. 1. Микрофото. Примеры дисплазии эпителия при внутрипротоковых муцинозных поражениях ПЖ (из архива МКНЦ им. А.С. Логинова): $\mathbf{a} - \mathbf{B}\Pi \mathbf{M} \mathbf{O} \ \mathbf{L} \mathbf{G}$, окраска гематоксилином и эозином, ув. $\times 200$; $\mathbf{6} - \mathbf{B}\Pi \mathbf{M} \mathbf{O} \ \mathbf{H} \mathbf{G}$, окраска гематоксилином и эозином, ув. $\times 400$.

Fig. 1. Photomicrographs. Examples of epithelial dysplasia in intraductal mucinous lesions of the pancreas (from the archive of the Loginov Moscow Clinical Scientific Center): $\mathbf{a} - \text{low-grade IPMN}$, hematoxylin and eosin stain, magnification $\times 200$; $\mathbf{6} - \text{high-grade IPMN}$, hematoxylin and eosin stain, magnification $\times 400$.

Рис. 2. Микрофото. Вторичное вовлечение протоков при протоковой аденокарциноме ПЖ с их кистозной трансформацией: \mathbf{a} — размер солидной низкодифференцированной карциномы превалирует над кистозно-расширенными протоками, в которых не просматриваются сосочки; окраска гематоксилином и эозином, ув. $\times 50$; $\mathbf{6}$ — однослойный эпителий карциномы внутри кисты; окраска гематоксилином и эозином, ув. $\times 200$.

Fig. 2. Photomicrographs. Secondary involvement of ducts in pancreatic ductal adenocarcinoma with cystic transformation: \mathbf{a} – the size of the solid, poorly differentiated carcinoma exceeds that of the cystically dilated ducts, in which papillae are not visible; hematoxylin and eosin stain, magnification $\times 50$; $\mathbf{6}$ – a monolayer of carcinoma epithelium within a cyst; hematoxylin and eosin stain, magnification $\times 200$.

исследователи утверждают, что ассоциированные карциномы биологически и прогностически отличаются от карцином, "растущих из ВПМО" [9, 10]. Поэтому эксперты ВОЗ рекомендуют тщательный (если не полный) гистологический анализ ткани ПЖ, расположенной между стенкой ВПМО и ассоциированной карциномой, для исключения их связи [2]. Тот же алгоритм предложен и для сопутствующей карциномы [1]. При этом неизвестно допустимое расстояние между ВПМО и карциномой, при котором теряется статус "ассоциированности" инвазивной карциномы. Этот аспект является наиболее спорным в патоморфологической диагностике, поскольку часто ассоциированные инвазивные карциномы могут вторично вовлекать в рост

ВПМО или классическая протоковая аденокарцинома может вовлекать протоки в виде колонизации опухолевых клеток с их вторичной кистозной дилатацией. Зачастую она имитирует ВПМО с дисплазией НG, вводя в заблуждение специалистов лучевых методов диагностики и патоморфологов (рис. 2). Поэтому важно отмечать высокую степень дисплазии эпителия только в структурах ВПМО. Ориентиром для патоморфологической дифференциальной диагностики может являться размер инвазивной карциномы. Классические протоковые аденокарциномы в среднем от 2 до 4 см, тогда как инвазивные карциномы, ассоциированные с ВПМО, – небольшие, максимум до 2 см, но с более благоприятным прогнозом.

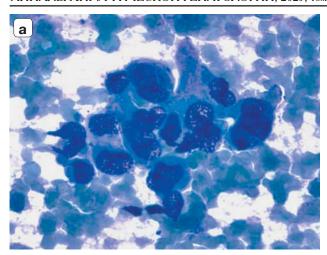
Таблица 2. Распределение ВПМО согласно ICD-О по данным ДЗМ за 2023—2024 гг.

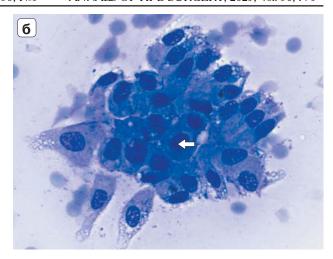
Table 2. Distribution of intraductal papillary mucinous neoplasms according to ICD-O, based on data from the Moscow Department of Health for 2023–2024

Параметр	Число наблюдений, абс.		
	8453/0	8453/2	8453/3
Мужчин	16	_	_
Женщин	37	1	1
40-50 лет	9		
51-60 лет	8		
61-70 лет	20	1	1
71-80 лет	12		
>81 года	4		
Итого:	53	1	1

Мы решили подвергнуть анализу пациентов, получивших хирургическое лечение, с внутрипротоковыми поражениями. При анализе пациентов с ВПМО за 2023—2024 гг., получивших лечение в крупных онкологических центрах ДЗМ со специализированными отделениями хирургии ПЖ, отметили, что из 55 наблюдений ВПМО НС была диагностирована только у 1 пациента, как и ВПМО-ассоциированная карцинома; 53 наблюдения были представлены ВПМО LС (табл. 2). Среди больных в 2 раза преобладали мужчины в возрасте 60—70 лет.

При пересмотре наблюдения с ICD-O 8453/3 пришли к выводу, что его невозможно отнести к ВПМО с ассоциированной карциномой, поскольку это была классическая низкодифференцированная протоковая аденокарцинома Grade 3. Опухоль имела солидное строение со всеми гистологическими признаками эпителиально-мезенхимального перехода в опухоли, вторичным вовлечением протоков и их кистозной трансформацией (рис. 2). Исключая это клиническое наблюдение, констатируем, что из 55 наблюдений не было ни одной ВПМО с ассоциированной карциномой. Проанализированные данные по ICD-O скорее свидетельствуют не об отсутствии ВПМО с ассоциированной карциномой после хирургической операции, а ее интерпретации патоморфологами ДЗМ как классической инвазивной протоковой аденокарциномы ПЖ ICD-О 8140/3.


Цитологические изменения при ВПМО


В предоперационной диагностике ВПМО часто используют тонкоигольную пункцию (ТИП) с дальнейшим цитологическим исследованием. Исследование материала пункции нередко является решающим этапом в определении тактики лечения. Для международной стандартизации цитологических заключений по панкреатобилиарной цитопатологии в 2022 г. создана

терминологическая система ВОЗ, наиболее согласованная с ІСО-О ВОЗ (2019) [11]. Неинвазивные предраковые поражения протоковой системы делят на низкодифференцированные и высокодифференцированные с разным риском злокачественности [12]. Например, ВПМО LG относят к диагностической категории 4 — риск малигнизации (ROM) составляет 5–20%. ВПМО HG относят к диагностической категории 5, которая является предиктором повышенного риска дисплазии высокой степени или карциномы, риск малигнизации 60-95%. Точная классификация эпителиальной атипии муцин-продуцирующей опухоли является сложной задачей, требующей хорошо сохранившегося эпителия и диагностического опыта.

Основные морфологические признаки дисплазии НG: размер клетки <12 мкм, высокое ядерно-цитоплазматическое отношение, аномальный гипохромный или гиперхромный хроматин и, часто, фоновый некроз (рис. 3). При оценке диагностической точности цитологической верификации дисплазии высокой степени/инвазивной (HGD) и аденокарциномы для ВПМО [13] чувствительность и специфичность составили 67 и 94%. Это также показывает, что существует хорошая корреляция между цитологическим и гистологическим исследованием и что цитологически в основном можно распознавать ВПМО с HGD/аденокарциномой. Однако эффективность цитологического анализа кистозных неоплазий может быть ограничена скудным клеточным материалом [14]. В этой ситуации наличие фонового муцина и (или) высокого уровня раковоэмбрионального антигена (СЕА) и (или) низкого уровня глюкозы в кистозной жидкости с учетом корреляции с изобразительными методами диагностики может быть достаточным для классификации неоплазии как муцинозной, даже при отсутствии эпителиального компонента [15]. Уровень СЕА в кистозной жидкости >192 нг/мл коррелирует с муцин-продуцирующей опухолью (точность 80%), но не со степенью дисплазии эпителия в опухоли [7, 8]. Для достижения специфичности 85% пороговое значение СЕА должно составлять 250 нг/мл [33].

Поиск более доступных маркеров продукции муцина привел к исследованию концентрации глюкозы в кистозной жидкости. В метаанализе, включающем 6 исследований и 566 пациентов, показано, что низкая концентрация глюкозы в кистозной жидкости (пороговая <2,7 ммоль/л) имеет чувствительность 90,1% и специфичность 85,3% в дифференциальной диагностике муцинозных и немуцинозных кистозных неоплазий [16]. Конечно, большую точность демонстрирует комбинированное тестирование СЕА и глюкозы [17, 18]. В кистозной жидкости рекомендуют также определять молекулярные маркеры про-

Рис. 3. Микрофото. ВПМО: a - HG, скопление полиморфных клеток с неровными крупными ядрами, неравномерным распределением хроматина, грубыми ядрышками; 6 - HG, пласт некрупных опухолевых клеток с увеличенным ядерно-цитоплазматическим соотношением, полиморфными гиперхромными ядрами, цитоплазматическими муцинозными вакуолями (указаны стрелкой). Окраска азуром и эозином, ув. $\times 1000$.

Fig. 3. Photomicrographs. Intraductal papillary mucinous neoplasm: \mathbf{a} – high-grade dysplasia, cluster of polymorphic cells with irregular large nuclei, uneven chromatin distribution, and prominent nucleoli; $\mathbf{6}$ – high-grade dysplasia, sheet of small tumor cells with high nuclear-to-cytoplasmic ratio, polymorphic hyperchromatic nuclei, and cytoplasmic mucinous vacuoles (indicated by arrow). Azure and eosin stain, magnification $\times 1000$.

дукции муцина и прогностические маркеры, но молекулярный анализ пока не является стандартом диагностики при оценке кистозной жидкости [19].

Особенности канцерогенеза при ВПМО

Генетические изменения при классическом протоковом раке ПЖ хорошо изучены, и ключевую роль отводят 4 драйверным генам: KRAS (~90%), TP53 (50–74%), CDKN2A (46–60%) и *SMAD4* (31–38%) [19]. При изучении молекулярных нарушений в ВПМО выявили поликлональность в пределах одной неоплазии [20]. Исследование подтвердило, что при ВПМО формируется канцерогенное поле вдоль всего внутрипротокового поражения, в разных участках которого возможно развитие ассоциированной карциномы. При молекулярном анализе неожиданно выявили долю наблюдений, в которых ВПМО и ассоциированные с ними инвазивные карциномы генетически совершенно не связаны друг с другом, и это приблизительно 1/6 всех наблюдений [20]. То есть инвазивные карциномы возникли из генетически различных предшествующих поражений в ПЖ. При этом исследованиями было подтверждено, что практически все коллоидные карциномы развиваются из связанных с ними ВПМО кишечного типа, а вот карциномы ампулярной области (дистальный общий желчный проток, ампулярная и дуоденальная карцинома) не развиваются из соседствующих с ними ВПМО. Особенно это отмечено при сравнении поздних мутационных событий в инвазивной карциноме, таких как

ТР53, экспрессия которого в ВПМО низкой степени, как правило, дикого типа. Только участки высокой дисплазии могут содержать мутированный тип, а в ассоциированной инвазивной карциноме он всегда мутированный. Такая же дискордантность генетических событий встречается и при мутации *SMAD4*.

При исследовании методом целенаправленного секвенирования нового поколения (NGS) образцов ткани ПЖ, в которых одновременно присутствовали структуры ВПМО и инвазивной карциномы, выяснили, что молекулярно-генетический профиль у 18% инвазивных карцином отличался от ВПМО, что свидетельствовало об их независимом пути развития [21].

Несмотря на неоспоримую роль ВПМО в канцерогенезе рака ПЖ, последние геномные данные свидетельствуют о том, что ВПМО больше следует рассматривать не как отдельное местно-регионарное заболевание, а скорее как комплексное поражение ПЖ. Риск развития рака уменьшается после резекции ПЖ с ВПМО, но он продолжает существовать для оставшейся части ПЖ [20]. Таким образом, можно предположить, что ВПМО является признаком того, что вся ПЖ подвергается необратимому процессу канцерогенеза.

На основе секвенирования предраковых поражений, первичных опухолей и метастазов проведено эволюционное моделирование развития стадий рака ПЖ.

На базе геномного исследования ВПМО между развитием дисплазии высокой степени и инвазивной карциномой возможен период до

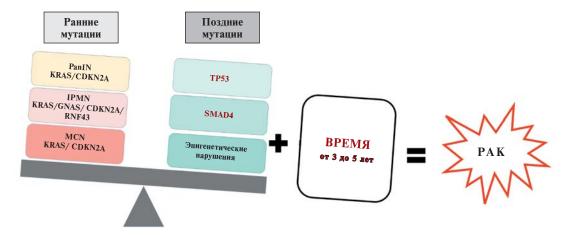


Рис. 4. Схема прогрессирования ВПМО согласно математическим моделям на основе молекулярных повреждений.

Fig. 4. Schematic diagram. Progression of IPMN based on mathematical models of molecular alterations.

4 лет [22]. Моделирование на основе данных секвенирования при поражениях PanIN также предполагает интервал примерно в 4 года между предраковой неопластической клеткой и клеткой, из которой непосредственно развивается протоковый рак [23]. Соответственно, между возникновением базовой мутации и появлением родительской опухолевой клетки проходит не менее 10 лет, а до метастазирования — еще 5 лет (рис. 4) [24].

Перспективы научных исследований

ВПМО демонстрируют различные маркеры, которые указывают на быстрое прогрессирование в сторону злокачественности. Недавние исследования выявили несколько генетических, молекулярных и иммунных факторов, которые могут служить индикаторами агрессивного поведения этих поражений. Понимание этих маркеров имеет решающее значение для современных терапевтических подходов.

Определение мутации в гене *KRAS* в предоперационном периоде имеет большое значение как для диагностики ВПМО, так и при выборе тактики лечения, например определении объема оперативного вмешательства. Для этого может понадобиться интраоперационное определение мутации в гене KRAS. В таких ситуациях ключевым моментом является скорость определения мутации в биоматериале. В постковидную эру особое распространение получили быстрые методы point of care диагностики, что позволило оптимизировать и разработать подходы для определения мутантного профиля опухоли менее чем за 45 мин. Например, тест на мутацию KRAS Idylla™ представляет собой быстрое решение для анализа мутации KRAS при метастатическом колоректальном раке; результаты можно получить в течение 2 ч. Это позволяет своевременно принимать персонализированные решения о лечении [25].

Маркеры быстрого прогрессирования ВПМО включают увеличение числа копий хромосомы 3q, особенно с участием таких онкогенов, как *PIK3CA*, *GATA2* и *TERC*, а также экспрессия hTERT и мутации в *GNAS* связаны с дисплазией высокой степени и могут указывать на более высокий риск прогрессирования заболевания [26].

Использование в предоперационной диагностике NGS кистозной жидкости для определения мутаций KRAS/GNAS очень чувствительно для ВПМО и высоко специфично для муцинозных неоплазий. Сочетание мутаций *TP53/PIK3CA/PTEN* является предоперационным маркером прогрессии неоплазии [27]. Панель молекулярных маркеров в сочетании с особенностями клинических данных заболевания позволяет классифицировать тип кисты с чувствительностью 90—100% и специфичностью 92—96% [28].

Специфические транскрипционные маркеры, такие как HOXB3 и ZNF117, связаны с дисплазией слабой степени, тогда как NKX6-2 связан с дисплазией высокой степени в желудочных типах ВПМО, что подчеркивает роль транскрипционных сетей в прогрессировании заболевания [29]. Кроме того, микро-РНК, такие как miR21 и miR155, активируются в инвазивных ВПМО, что указывает на их потенциальную злокачественную трансформацию.

В последнее время развивается изучение гетерогенности опухоли с помощью одноклеточных подходов, что чрезвычайно важно для ВПМО, поскольку в них выявили значительную клеточную гетерогенность и пластичность. Секвенирование отдельных клеток показало, что ВПМО содержат разнообразные генетические варианты, часто в одних и тех же генах-драйверах, что указывает на поликлональное происхождение и сложную эволюцию данной опухоли [6]. Различные гистологические подтипы ВПМО демонстрируют различные клеточные паттерны

с вариациями инфильтрации иммунных клеток. Иммунный ландшафт ВПМО динамичен, с вариациями в популяциях Т-клеток и В-клеток в зависимости от степени злокачественности. В ВПМО НС часто просматриваются лимфоидные узелки, что предполагает повышенную активацию В-клеток. В ВПМО LС отмечают именно провоспалительный иммунный профиль, но он уменьшается по мере прогрессирования до инвазивного рака, что подчеркивает иммунный уход внутрипротоковых поражений при нарастании клеточной атипии и появлении новых мутационных событий [30].

Полученные данные свидетельствуют о том, что анализ отдельных клеток может идентифицировать ранние молекулярные изменения и клеточные эволюционные переходы, которые предшествуют инвазивному раку, предоставляя потенциальные цели для ранней терапии [31, 32]. С другой стороны, они также подчеркивают трудности в переносе результатов в клиническую практику, особенно в отношении выявления действенных терапевтических мишеней из-за выраженной гетерогенности опухолей. Возможно, в перспективе потребуется разработка комплексной терапии с учетом воздействия на различные мутационные события в опухоли. Тем не менее применение секвенирования РНК отдельных клеток и изучение пространственной транскриптомики для выявления сложных клеточных экосистем внутри ВПМО позволят лучше понять этапы канцерогенеза и иммунную микросреду.

• Заключение

Механизм канцерогенеза ВПМО сложен и неоднозначен, как и факт наличия ассоциированной протоковой карциномы в ПЖ, которая, согласно, своему молекулярному профилю, чаще является генетически независимой. Поэтому глубокое понимание геномных изменений в ВПМО, как фоновых поражений для протокового рака ПЖ, обусловливающих их генетическую гетерогенность, имеет большое клиническое значение для понимания поликлональной теории развития рака, поиска новых мишеней и подходов в терапии.

Участие авторов

Паклина О.В. — концепция и дизайн статьи, написание текста, редактирование, утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.

Носкова К.К. — написание текста цитологического раздела статьи, редактирование, утверждение окончательного варианта статьи.

Абрамов Й.С. — написание текста молекулярногенетического раздела статьи, редактирование, утверждение окончательного варианта статьи.

Бодунова Н.А. – редактирование, утверждение окончательного варианта статьи.

Савелов Н.А. – предоставление статистических данных по г. Москве.

Authors contributions

Paklina O.V. – concept and design of the article, writing text, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article.

Noskova K.K. – draft of the cytology section of the article, editing, approval of the final version of the article.

Abramov I.S. – draft of the molecular genetics section, editing, approval of the final version of the article.

Bodunova N.A. — editing, approval of the final version of the article.

Savelov N.A. – statistical data for Moscow.

Список литературы [References]

- Adsay V., Mino-Kenudson M., Furukawa T., Basturk O., Zamboni G., Marchegiani G., Bassi C., Salvia R., Malleo G., Paiella S., Wolfgang C., Matthaei H., Offerhaus G., Adham M., Bruno M., Reid M., Krasinskas A., Klöppel G., Ohike N., Takuma TajiriKee Taek Jang, Roa J., Allen P., Fernández-Del Castillo C., Jin Young Jang, Klimstra D., Hruban R. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona Consensus Meeting. *Ann. Surg.* 2016; 263 (1): 162–177. https://doi.org/10.1097/SLA.0000000000001173
- Digestive System Tumours. WHO Classification of Tumours, 5th Edition. 2019. V. 1. https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Digestive-System-Tumours-2019
- 3. Felsenstein M., Hruban R.H., Wood L.D. New developments in the molecular mechanisms of pancreatic tumorigenesis. *Adv. Anat. Pathol.* 2018; 25 (2): 131–142. https://doi.org/10.1097/PAP.000000000000172
- Amato E., Molin M., Mafficini A., Jun Yu, Malleo G., Rusev B., Fassan M., Antonello D., Sadakari Y., Castelli P., Zamboni G., Maitra A., Salvia R., Hruban R., Bassi C., Capelli P., Lawlor, Goggins M., Scarpa A. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. *J. Pathol.* 2014; 233 (3): 217–227. https://doi.org/10.1002/path.4344
- Sakamoto H., Kuboki Y., Hatori T., Yamamoto M., Sugiyama M., Shibata N., Shimizu K., Shiratori K., Furukawa T. Clinicopathological significance of somatic RNF43 mutation and aberrant expression of ring finger protein 43 in intraductal papillary mucinous neoplasms of the pancreas. *Mod. Pathol.* 2015; 28 (2): 261–267. https://doi.org/10.1038/modpathol.2014.98
- Kuboki Y., Shimizu K., Hatori T., Yamamoto M., Shibata N., Shiratori K., Furukawa T. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. *Pancreas*. 2015; 44 (2): 227–235. https://doi.org/10.1097/mpa.0000000000000253
- Abe K., Suda K., Arakawa A., Yamasaki S., Sonoue H., Mitani K., Nobukawa B. Different patterns of p16INK4A and p53 protein expressions in intraductal papillary-mucinous neoplasms and pancreatic intraepithelial neoplasia. *Pancreas*.

- 2007; 34 (1): 85–91. https://doi.org/10.1097/01.mpa.0000240608.56806.0a
- Inoue H., Furukawa T., Sunamura M., Takeda K., Matsuno S., Horii A. Exclusion of SMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis. *Genes Chromosomes Cancer*. 2001; 31 (3): 295–299. https://doi.org/10.1002/gcc.1147
- Yamaguchi K., Kanemitsu S., Hatori T., Maguchi H., Shimizu Y., Tada M., Nakagohri T., Hanada K., Osanai M., Noda Y., Nakaizumi A., Furukawa T., Ban S., Nobukawa B., Kato Y., Tanaka M. Pancreatic ductal adenocarcinoma derived from IPMN and pancreatic ductal adenocarcinoma concomitant with IPMN. *Pancreas*. 2011; 40 (4): 571–580. https://doi.org/10.1097/mpa.0b013e318215010c
- Basturk O., Hong S.M., Wood L.D., Adsay N.V., Albores-Saavedra J., Biankin A.V., Brosens L.A., Fukushima N., Goggins M., Hruban R.H., Kato Y., Klimstra D.S., Klöppel G., Krasinskas A., Longnecker D.S., Matthaei H., Offerhaus G.J., Shimizu M., Takaori K., Terris B., Yachida S., Esposito I., Furukawa T. A Revised classification system and recommendations from the Baltimore Consensus Meeting for neoplastic precursor lesions in the pancreas. *Am. J. Surg. Pathol.* 2015; 39 (12): 1730–1741. https://doi.org/10.1097/PAS.0000000000000533
- Pitman M.B., Centeno B.A., Reid M.D., Siddiqui M.T., Layfield L.J., Perez-Machado M., Weynand B., Stelow E.B., Lozano M.D., Fukushima N., Cree I.A., Mehrotra R., Schmitt F.C., Field A.S. The World Health Organization reporting system for pancreaticobiliary cytopathology. *Acta Cytol*. 2023; 67 (3): 304–320. https://doi.org/10.1159/000527912
- Hoda R., Arpin R., Rosenbaum M., Pitman M. Risk of malignancy associated with diagnostic categories of the proposed World Health Organization international system for reporting pancreaticobiliary cytopathology. *Cancer Cytopathol*. 2022; 130 (3): 195–201. https://doi.org/10.1002/cncy.22514
- Serinelli S., Khurana K. Intraductal papillary mucinous neoplasms of the pancreas: cytologic-histologic correlation study and evaluation of the cytologic accuracy in identifying high-grade dysplasia/invasive adenocarcinoma. *Cytojournal*. 2024; 21: 6. https://doi.org/10.25259/Cytojournal_71_2023
- Wang Q.X., Xiao J., Orange M., Zhang H., Zhu Y.Q. EUS-Guided FNA for diagnosis of pancreatic cystic lesions: a meta-analysis. *Cell Physiol. Biochem.* 2015; 36 (3): 1197–1209. https://doi.org/10.1159/000430290
- Guzmán-Calderón E., Md B.M., Casellas J.A., Aparicio J.R. Intracystic glucose levels appear useful for diagnosis of pancreatic cystic lesions: a systematic review and meta-analysis. *Dig. Dis. Sci.* 2022; 67 (6): 2562–2570. https://doi.org/10.1007/s10620-021-07035-w
- Ribaldone D.G., Bruno M., Gaia S., Cantamessa A., Bragoni A., Caropreso P., Sacco M., Fagoonee S., Saracco G.M., De Angelis C. Differential diagnosis of pancreatic cysts: a prospective study on the role of intra-cystic glucose concentration. *Dig. Liver Dis.* 2020; 52 (9): 1026–1032. https://doi.org/10.1016/j.dld.2020.06.038
- 17. Gorris M., Dijk F., Farina A., Halfwerk J.B., Hooijer G.K., Lekkerkerker S.J., Voermans R.P., Wielenga M.C., Besselink M.G., van Hooft J.E. Validation of combined carcinoembryonic antigen and glucose testing in pancreatic cyst fluid to differentiate mucinous from non-mucinous cysts. *Surg. Endosc.* 2023; 37 (5): 3739–3746. https://doi.org/10.1007/s00464-022-09822-6
- 18. Sinha S.R., Mondal S., Akhtar M.J., Singh R.K., Prakash P. Evaluating carcinoembryonic antigen and glucose levels in

- pancreatic cyst fluid for mucinous versus non-mucinous differentiation. *Cureus*. 2024; 16 (6): e62686. https://doi.org/10.7759/cureus.62686
- McCarty T.R., Paleti S., Rustagi T. Molecular analysis of EUS-acquired pancreatic cyst fluid for KRAS and GNAS mutations for diagnosis of intraductal papillary mucinous neoplasia and mucinous cystic lesions: a systematic review and meta-analysis. *Gastrointest. Endosc.* 2021; 93 (5): 1019–1033.e5. https://doi.org/10.1016/j.gie.2020.12.014
- 20. Oldfield L.E., Connor A.A., Gallinger S. Molecular events in the natural history of pancreatic cancer. *Trends Cancer.* 2017; 3 (5): 336–346. https://doi.org/10.1016/j.trecan.2017.04.005
- Marchegiani G., Mino-Kenudson M., Ferrone C.R., Morales-Oyarvide V., Warshaw A.L., Lillemoe K.D., Castillo C.F. Patterns of recurrence after resection of IPMN: who, when, and how? *Ann. Surg.* 2015; 262 (6): 1108–1114. https://doi.org/10.1097/sla.000000000001008
- 22. Felsenstein M., Noë M., Masica D.L., Hosoda W., Chianchiano P., Fischer C.G., Lionheart G., Brosens L.A.A., Pea A., Yu J., Gemenetzis G., Groot V.P., Makary M.A., He J., Weiss M.J., Cameron J.L., Wolfgang C.L., Hruban R.H., Roberts N.J., Karchin R., Goggins M.G., Wood L.D. IPMNs with co-occurring invasive cancers: neighbours but not always relatives. *Gut.* 2018; 67 (9): 1652–1662. https://doi.org/10.1136/gutjnl-2017-315062
- 23. Noë M., Niknafs N., Fischer C.G., Hackeng W.M., Beleva Guthrie V., Hosoda W., Debeljak M., Papp E., Adleff V., White J.R., Luchini C., Pea A., Scarpa A., Butturini G., Zamboni G., Castelli P., Hong S.M., Yachida S., Hiraoka N., Gill A.J., Samra J.S., Offerhaus G.J.A., Hoorens A., Verheij J., Jansen C., Adsay N.V., Jiang W., Winter J., Albores-Saavedra J., Terris B., Thompson E.D., Roberts N.J., Hruban R.H., Karchin R., Scharpf R.B., Brosens L.A.A., Velculescu V.E., Wood L.D. Genomic characterization of malignant progression in neoplastic pancreatic cysts. *Nat. Commun.* 2020; 11 (1): 4085. https://doi.org/10.1038/s41467-020-17917-8
- 24. Makohon-Moore A.P., Matsukuma K., Zhang M., Reiter J.G., Gerold J.M., Jiao Y., Sikkema L., Attiyeh M.A., Yachida S., Sandone C., Hruban R.H., Klimstra D.S., Papadopoulos N., Nowak M.A., Kinzler K.W., Vogelstein B., Iacobuzio-Donahue C.A. Precancerous neoplastic cells can move through the pancreatic ductal system. *Nature*. 2018; 561 (7722): 201–205. https://doi.org/10.1038/s41586-018-0481-8
- Yachida S., Jones S., Bozic I., Antal T., Leary R., Fu B., Kamiyama M., Hruban R.H., Eshleman J.R., Nowak M.A., Velculescu V.E., Kinzler K.W., Vogelstein B., Iacobuzio-Donahue C.A. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. *Nature*. 2010; 467 (7319): 1114–1117. https://doi.org/10.1038/nature09515
- Weyn C., Van Raemdonck S., Dendooven R., Maes V., Zwaenepoel K., Lambin S., Pauwels P. Clinical performance evaluation of a sensitive, rapid low-throughput test for KRAS mutation analysis using formalin-fixed, paraffin-embedded tissue samples. *BMC Cancer*. 2017; 17 (1): 139. https://doi.org/10.1186/s12885-017-3112-0
- 27. Moris D., Damaskos C., Spartalis E., Papalampros A., Vernadakis S., Dimitroulis D., Griniatsos J., Felekouras E., Nikiteas N. Updates and critical evaluation on novel biomarkers for the malignant progression of intraductal papillary mucinous neoplasms of the pancreas. *Anticancer Res.* 2017; 37 (5): 2185–2194. https://doi.org/10.21873/anticanres.11553

- 28. Singhi A.D., McGrath K., Brand R.E., Khalid A., Zeh H.J., Chennat J.S., Fasanella K.E., Papachristou G.I., Slivka A., Bartlett D.L., Dasyam A.K., Hogg M., Lee K.K., Marsh J.W., Monaco S.E., Ohori N.P., Pingpank J.F., Tsung A., Zureikat A.H., Wald A.I., Nikiforova M.N. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. *Gut.* 2018; 67 (12):2131–2141.https://doi.org/10.1136/gutjnl-2016-313586
- 29. Springer S., Wang Y., Dal Molin M., Masica D.L., Jiao Y., Kinde I., Blackford A., Raman S.P., Wolfgang C.L., Tomita T., Niknafs N., Douville C., Ptak J., Dobbyn L., Allen P.J., Klimstra D.S., Schattner M.A., Schmidt C.M., Yip-Schneider M., Cummings O.W., Brand R.E., Zeh H.J., Singhi A.D., Scarpa A., Salvia R., Malleo G., Zamboni G., Falconi M., Jang J.Y., Kim S.W., Kwon W., Hong S.M., Song K.B., Kim S.C., Swan N., Murphy J., Geoghegan J., Brugge W., Fernandez-Del Castillo C., Mino-Kenudson M., Schulick R., Edil B.H., Adsay V., Paulino J., van Hooft J., Yachida S., Nara S., Hiraoka N., Yamao K., Hijioka S., van der Merwe S., Goggins M., Canto M.I., Ahuja N., Hirose K., Makary M., Weiss M.J., Cameron J., Pittman M., Eshleman J.R., Diaz L.A. Jr, Papadopoulos N., Kinzler K.W., Karchin R., Hruban R.H., Vogelstein B., Lennon A.M. A combination of molecular markers and clinical features improve the classification
- of pancreatic cysts. *Gastroenterology*. 2015; 149 (6): 1501–1510. https://doi.org/10.1053/j.gastro.2015.07.041
- Agostini A., Piro G., Inzani F., Quero G., Esposito A., Caggiano A., Priori L., Larghi A., Alfieri S., Casolino R., Scaglione G., Tondolo V., Cammarota G., Ianiro G., Corbo V., Biankin A.V., Tortora G., Carbone C. Identification of spatiallyresolved markers of malignant transformation in intraductal papillary mucinous neoplasms. *Nat. Commun.* 2024; 15 (1): 2764. https://doi.org/10.1038/s41467-024-46994-2
- Bernard V., Semaan A., Huang J., San Lucas F.A., Mulu F.C., Stephens B.M., Guerrero P.A., Huang Y., Zhao J., Kamyabi N., Sen S., Scheet P.A., Taniguchi C.M., Kim M.P., Tzeng C.W., Katz M.H., Singhi A.D., Maitra A., Alvarez H.A. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression 2018. *Clin. Cancer Res.* 2019; 25 (7): 2194–2205. https://doi.org/10.1158/1078-0432.CCR-18-1955
- 32. Hernandez-Barco Y.G., Bardeesy N., Ting D.T. No cell left unturned: intraductal papillary mucinous neoplasm heterogeneity comment. *Clin. Cancer Res.* 2019; 25 (7): 2027–2029. https://doi.org/10.1158/1078-0432.CCR-18-3877
- 33. Kwan M.C., Zhang L.M. Pancreas fine needle aspiration: current and future impact on patient care. *Surg. Pathol. Clin.* 2024; 17(3): 441–452. https://doi.org/10.1016/j.path.2024.04.007

Сведения об авторах [Authors info]

Паклина Оксана Владимировна — доктор мед. наук, научный консультант лаборатории инновационной патоморфологии ГБУЗ "МКНЦ им. А.С. Логинова" ДЗ города Москвы; главный научный сотрудник лаборатории электронной микроскопии отделения патологической анатомии ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. http://orcid.org/0000-0001-6373-1888. E-mail: dr.oxanapaklina@mail.ru

Носкова Карина Кадиевна — канд. мед. наук, заведующая отделением клинико-лабораторной диагностики ГБУЗ "МКНЦ им. А.С. Логинова" ДЗ города Москвы. http://orcid.org/0000-0001-5734-0995. E-mail: karnoskova@mail.ru

Абрамов Иван Сергеевич — биолог Московского городского медико-генетического центра ГБУЗ "МКНЦ им. А.С. Логинова" ДЗ города Москвы. http://orcid.org/0000-0002-6954-1564. E-mail: abriv@bk.ru

Бодунова Наталья Александровна — канд. мед. наук, заведующая центром персонализированной медицины, руководитель Московского городского медико-генетического центра ГБУЗ "МКНЦ им. А.С. Логинова" ДЗ города Москвы. http://orcid.org/0000-0002-3119-7673. E-mail: n.bodunova@mknc.ru

Савелов Никита Александрович — руководитель городского центра патологоанатомической диагностики и молекулярной генетики ГБУЗ "МГОБ №62" ДЗ города Москвы. http://orcid.org/0000-0002-4164-2240. E-mail: savelovNA1@zdrav.mos.ru Для корреспонденции*: Паклина Оксана Владимировна — e-mail: dr.oxanapaklina@mail.ru

Oksana V. Paklina — Doct. of Sci. (Med.), Scientific Consultant of the Laboratory of Innovative Pathomorphology of the Moscow Clinical Scientific Center named after A.S. Loginov; Chief Researcher at the Electron Microscopy Laboratory of the Department of Pathological Anatomy, A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Healthcare of the Russian Federation. http://orcid.org/0000-0001-6373-1888. E-mail: dr.oxanapaklina@mail.ru

Karina K. Noskova — Cand. of Sci. (Med.), Head of the Department of Clinical and Laboratory Diagnostics, Moscow Clinical Scientific Center named after A.S. Loginov. http://orcid.org/0000-0001-5734-0995. E-mail: karnoskova@mail.ru

- Biologist of the Moscow City Medical and Genetic Center, Moscow Clinical Scientific Center named after A.S. Loginov. http://orcid.org/0000-0002-6954-1564. E-mail: abriv@bk.ru

Natalia A. Bodunova — Cand. of Sci. (Med.), Head of the Center for Personalized Medicine, Director of the Moscow City Medical and Genetic Center, Moscow Clinical Scientific Center named after A.S. Loginov. http://orcid.org/0000-0002-3119-7673. E-mail: n.bodunova@mknc.ru

Nikita A. Savelov — Head of the City Center for Pathoanatomic Diagnostics and Molecular Genetics, Moscow City Oncology Hospital No. 62 of the Moscow City Department of Health. http://orcid.org/0000-0002-4164-2240. E-mail: savelovNA1@zdrav.mos.ru

For correspondence*: Oksana V. Paklina – e-mail: dr.oxanapaklina@mail.ru

Статья поступила в редакцию журнала 7.04.2025. Received 7 April 2025. Принята к публикации 24.06.2025. Accepted for publication 24 June 2025.