Предоперационное планирование – неинвазивная лучевая диагностика Pre-operative planning – non-invasive radiology

ISSN 1995-5464 (Print); ISSN 2408-9524 (Online) https://doi.org/10.16931/1995-5464.2021125-33

Влияние параметров низкодозового протокола сканирования на результаты текстурного анализа протоковой аденокарциномы поджелудочной железы

Тихонова В.С. 1* , Кармазановский Г.Г. 1,2 , Кондратьев Е.В. 1 , Груздев И.С. 1 , Глотов А.В. 1

Цель. Изучение зависимости текстурных показателей при KT протоковой аденокарциномы поджелудочной железы от применения стандартных и низкодозовых параметров сканирования.

Материал и методы. В исследование включено 52 пациента с гистологически подтвержденной неметастатической местнораспространенной протоковой аденокарциномой поджелудочной железы, которым выполняли КТ с использованием стандартных (120 кВ) и низкодозовых (100 кВ) протоколов сканирования. Сравнивали текстурные показатели гистологически идентичных опухолей во все фазы сканирования.

Результаты. Получено 53 текстурных показателя для всех типов дифференцировки протоковой аденокарциномы поджелудочной железы в каждую фазу сканирования. Из 53 показателей текстурного анализа менее половины статистически различались для каждой фазы сканирования — 11 (20,8%) показателей для нативной фазы, 18 (34%) — для артериальной, 19 (35,8%) — для венозной и отсроченной фаз сканирования при всех типах дифференцировки опухоли (GLCM_Contrast, GLCM_Correlation, GLCM_Dissimilarity, GLRLM_SRHGE и пр., p < 0,05). Диагностическая точность >50% показателей сохраняется при изменении напряжения на трубке в протоколе KT.

Заключение. Применение низкодозового протокола КТ не влияет на диагностическую точность показателей текстурного анализа в предоперационной оценке степени дифференцировки протоковой аденокарциномы поджелудочной железы.

Ключевые слова: поджелудочная железа, аденокарцинома, компьютерная томография, текстурный анализ, низкодозовый протокол, прогнозирование степени дифференцировки.

Ссылка для цитирования: Тихонова В.С., Кармазановский Г.Г., Кондратьев Е.В., Груздев И.С., Глотов А.В. Влияние параметров низкодозового протокола сканирования на результаты текстурного анализа протоковой аденокарциномы поджелудочной железы. *Анналы хирургической гепатологии*. 2021; 26 (1): 25—33. https://doi.org/10.16931/1995-5464.2021125-33.

Источники финансирования. Исследование финансировал Российский фонд фундаментальных исследований по исследовательскому проекту № 20-315-90092. Источник финансирования не участвовал в разработке исследования, сборе, анализе и интерпретации данных, написании отчета и принятии решения о подаче статьи для публикации.

Influence of the low-dose CE-MDCT scanning protocol parameters on the results of pancreatic ductal adenocarcinoma radiomic analysis

Tikhonova V.S.^{1*}, Karmazanovsky G.G.^{1,2}, Kondratyev E.V.¹, Gruzdev I.S.¹, Glotov A.V.¹

Aim. To investigate the dependence of textural parameters of pancreatic ductal adenocarcinoma on using standard and low-dose CT protocols.

Materials and methods. The study included 52 consecutive patients with histologically confirmed pancreatic ductal

¹ ФГБУ "Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского" Минздрава России; 117997, г. Москва, ул. Большая Серпуховская, д. 27, Российская Федерация

² ФГАОУ ВО "Российский национальный исследовательский медицинский университет им. Н.И. Пирогова" Минздрава России; 117997, г. Москва, ул. Островитянова, д. 1, Российская Федерация

¹ Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation; 27, Bolshaya Serpukhovskaya str., Moscow, 117997, Russian Federation

² Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation; 1, Ostrivityanova str., Moscow, 117997, Russian Federation

adenocarcinoma who underwent contrast enhanced computed tomography using standard (120 kV) and low-dose (100 kV) scanning protocols. We compared radiomics features of the identical histological tumors in all scanning phases. **Results.** We calculated 53 radiomics features in all types of pancreatic ductal adenocarcinoma grade differentiation for all scanning phases. We identified that out of 53 features of texture analysis, less than half was statistically different for each scan phase (11 parameters (20.8%) for the unenhanced phase; 18 parameters (34%) for the arterial; 19 parameters (35.8%) for the venous and delayed scanning phases), in all types of tumor differentiation (GLCM_Contrast, GLCM_Correlation, GLCM_Dissimilarity, GLRLM_SRHGE etc., p < 0.05). The diagnostic accuracy of more than 50% of the radiomics features is preserved when changing kV in the CT scan protocol.

Conclusion. The use of a low-dose CT protocol doesn't affect the diagnostic accuracy of the features of texture analysis in the preoperative assessment of the degree of differentiation of pancreatic ductal adenocarcinoma.

Keywords: pancreas, adenocarcinoma, CT-scan, texture analysis, low-dose scanning protocol, predicting the degree of differentiation.

For citation: Tikhonova VS. Karmazanovsky G.G. Kondratyey F.V. Gruzdey I.S. Glotov A.V. Influence of the low-dose

For citation: Tikhonova V.S., Karmazanovsky G.G., Kondratyev E.V., Gruzdev I.S., Glotov A.V. Influence of the low-dose CE-MDCT scanning protocol parameters on the results of pancreatic ductal adenocarcinoma radiomic analysis. *Annaly khirurgi-cheskoy gepatologii = Annals of HPB surgery.* 2021; 26 (1): 25–33. (In Russian). https://doi.org/10.16931/1995-5464.2021125-33.

Funding sources. The reported study was funded by Russian Foundation for Basic Research according to the research project N_2 20-315-90092. The funding source had not any involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Conflict of interest. The authors declare that there are no conflicts of interest.

Введение

Поджелудочная железа (ПЖ) — это железистый орган, относящийся к пищеварительной и эндокринной системам, обладающий внешнесекреторной и внутрисекреторной функциями [1]. К патологическим состояниям органа приводят различные этиологические факторы и условия современного образа жизни, увеличивающие нагрузку на него [2]. Своевременное и правильное выявление новообразования ПЖ имеет большое значение для точной постановки диагноза и выбора тактики лечения [3]. ПЖ состоит из различных по строению и функциям клеток, а новообразования ПЖ могут развиваться из нормальных протоковых клеток, ацинарных или островковых клеток. Рак ПЖ, развивающийся из клеток эпителия протоков, составляет порядка 85% всех новообразований органа [4].

По сравнению с прилегающей нормальной тканью ПЖ протоковая аденокарцинома (ПАК) является гиповаскулярной (гиподенсной) благодаря большому количеству фиброзной ткани в структуре [5, 6]. В настоящее время чувствительность и специфичность КТ в диагностике рака ПЖ достигают 89–90% [7]. КТ обладает 100% чувствительностью в выявлении опухолей >2 см, но при небольших опухолях <2 см чувствительность меньше (60–77%) [8]. Ключом к диагностике ПАК ПЖ является достижение максимально возможной разницы в контрастировании между нормальной паренхимой ПЖ и опухолью [9].

В мировой литературе достаточно широко освещено применение низкодозовых параметров сканирования в различных областях лучевой диагностики. Что касается ПАК ПЖ, в одном из исследований было установлено, что низкодозовый протокол КТ (80 кВ) с высокой йодной нагрузкой улучшает отображение рака ПЖ по

сравнению со стандартным протоколом (120 кВ) [10]. Таким образом, применение низкодозового сканирования может максимально улучшить видимые для глаза различия в накоплении контрастного вещества между гиповаскулярной опухолью и окружающей паренхимой, поэтому они могут быть чрезвычайно полезны.

Текстурный анализ, или радиомика, – это новый метод компьютерного анализа, позволяющий, в зависимости от программного обеспечения, вычислять от нескольких десятков до нескольких тысяч текстурных показателей ткани, таких, к примеру, как распределения значений пикселей и вокселей, их взаимоотношения в изображении, куртозис, энтропия, сглаженность и т.д. [11, 12]. Воспроизводимость текстурного анализа ПАК ПЖ отражена в литературе слабо. Группой авторов при исследовании воспроизводимости показателей текстурного анализа при внутрипротоковой аденокарциноме установлено, что воспроизводимость больше зависит от различий сканирования, чем от сегментации [13]. Зависимость текстурных показателей при КТ с внутривенным болюсным контрастированием с применением низкодозовых параметров сканирования при ПАК ПЖ вообще не изучена.

Целью исследования было изучение зависимости текстурных показателей при КТ ПАК ПЖ с применением стандартных и низкодозовых параметров сканирования.

Материал и методы

Исследование было одобрено этическим комитетом ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. В него включили 52 пациента с гистологически подтвержденной неметастатической местнораспространенной ПАК ПЖ. Все пациенты перенесли операцию

Таблица 1. Демографические данные и параметры сканирования **Table 1.** Demographics and scan parameters

Попомотр	Группа больных		-
Параметр	1	2	<i>p</i>
Число наблюдений, абс.	28	24	
Возраст, годы	62 ± 12	61 ± 9	0,719
ИМТ, $\kappa \Gamma / M^2$	$28,5 \pm 3,53$	$27,2 \pm 3,13$	0,587
Напряжение на трубке, кВ	120	100	
Ток трубки, мАс	Автоматически	Автоматически	
Dose Reduction Index (DRI, Philips)	18	13	
Реконструкция	iDose5		
Контрастное вещество	1,2 мл/кг, 350 мг І/мл, 3,5 мл/с		

в период с 2017 по 2019 г. Ретроспективно анализировали результаты МСКТ органов брюшной полости, выполненной до операции. Критериями включения считали КТ, выполненную в полном объеме, наличие гистологического исследования с определением степени дифференцировки опухоли на основании классификации ВОЗ [14]. Гистологическое исследование макропрепаратов в Центре проводят по методике, рекомендованной Колледжем американских патологов (САР) [15]. Критериями исключения считали инвазивное вмешательство, качество МСКТ, которое не позволяло провести объективную оценку результатов, а также проведение системного или регионарного лечения по поводу ПАК ПЖ перед МСКТ.

Отобранные пациенты были разделены на две группы по протоколам сканирования. В 1-й группе применяли протокол сканирования 120 кВ, во 2-й — 100 кВ (табл. 1). Протоколы сканирования были осуществлены в разные периоды времени, чем была достигнута рандомизация. Группы больных были сопоставимы по среднему индексу массы тела (ИМТ).

Протоколы сканирования. МСКТ органов брюшной полости выполняли на томографе Philips Ingenuity 64 (Brilliance Ingenuity, Philips Healthcare, Кливленд, Огайо, США). Пациентам 1-й группы применен стандартный протокол МСКТ со следующими параметрами: напряжение на трубке 120 кВ, автоматическая установка тока трубки по программе Dose Right (DRI = 18), коллимация $64 \times 0,625$, время вращения 0,5 с, шаг 0,98. При исследовании пациентов 2-й группы применяли следующие параметры: напряжение на трубке 100 кВ, автоматическая установка тока трубки программным обеспечением Dose Right, но DRI уменьшался до 13 для достижения того же уровня ожидаемого DLP, коллимация $64 \times 0,625$, время вращения 0,5 с, шаг 0,98. Всем пациентам исследование выполнили с внутривенным контрастированием. Вводили йодсодержащий контрастный препарат (КП) Йоверсол (Optiray 350®; Mallinckrodt Inc., Сент-Луис, Миссури, США) с концентрацией йода 350 мг/мл. КП вводили с помощью автоматического инжектора со скоростью 3.5 мл/c, доза -1.2 мл/кг. Инъекция КП сопровождалась введением 25 мл физиологического раствора. КП вводили через катетер 20-го калибра, помещенный в кубитальную вену. КП и физиологический раствор были синхронизированы с помощью системы слежения за болюсом. Контроль болюса КП во всех наблюдениях осуществляли на уровне нисходящей аорты. Порог срабатывания был установлен на уровне 150 HU. Триггер ROI (Region Of Interest) помещали в центр нисходящей аорты с запуском сканирования артериальной фазы на 10 с, венозной фазы — на 38 с, отсроченной фазы исследования — на 300. Уровень слежения и исходное положение были одинаковыми. Данные получены при сканировании от купола диафрагмы до гребня подвздошной кости в краниокаудальном направлении.

Текстурный анализ томограмм. Текстурные показатели были получены с помощью программного обеспечения LifEx (v. 5.10, www.lifexsoft.org) [16]. В портальную фазу исследования с использованием аксиальных срезов сканирования выделяли весь объем опухоли с помощью трехмерной области интереса (3D-ROI; рис. 1). Вручную были синхронизированы все остальные фазы ска-

Рис. 1. Компьютерная томограмма. Протоковая аденокарцинома головки ПЖ, венозная фаза исследования. Весь объем опухоли выделен с помощью 3D-ROI.

Fig. 1. CT-scan. Pancreatic head ductal adenocarcinoma, venous scanning phase. 3D-ROI segmentation of the tumor.

нирования по срезам для получения идентичной области интереса, которая охватывала опухоль.

Было получено 53 показателя текстурного анализа для всех типов дифференцировки во все В группах наблюдения: CONVENTIONAL HUmin, CONVENTIONAL CONVENTIONAL HUstd, CONVENTIONAL HUmax, CONVENTIONAL CONVENTIONAL_HUQ2, HUQ1, CONVENTIONAL HUQ3, HISTO Skewness, HISTO Kurtosis, HISTO Excess Kurtosis, HISTO Entropy log10, HISTO Entropy log2, HISTO Energy (=Uniformity), SHAPE Sphericity (Only for 3D-ROI (nz>1), SHAPE_Compacity only for 3D-ROI (nz>1), PARAMS_Distance Of Neighbours, PARAMS_Number Of Grey Levels, PARAMS_Bin Size, PARAMS Z Spatial Resampling, PARAMS Y Resampling, PARAMS X GLCM Homogeneity (=Inverse Resampling, difference), GLCM Energy (=Angular second moment), GLCM Contrast (=Variance), GLCM Correlation, GLCM Entropy log10, GLCM Entropy log2 (=Joint entropy), GLRLM_SRE, GLRLM_LRE, Dissimilarity, GLRLM_LGRE, GLRLM_HGRE, GLRLM SRLGE, GLRLM_SRHGE, GLRLM_LRLGE, GLRLM_LRHGE, GLRLM_GLNU, GLRLM_ RLNU, GLRLM RP, NGLDM Coarseness, NGLDM Contrast, NGLDM Busyness, GLZLM SZE, GLZLM LZE, GLZLM LGZE, GLZLM HGZE, GLZLM_SZLGE, GLZLM_SZHGE, GLZLM LZLGE, GLZLM LZHGE, GLZLM GLNU, GLZLM_ZLNU, GLZLM_ZP.

Статистический анализ. Все данные представлены как среднее значение \pm стандартное отклонение. Двухвыборочный (парный и непарный) критерий Стьюдента был рассчитан для анализа непрерывных переменных с нормальным распределением. Применяли статистическое программное обеспечение SPSS 21.0.0.0 (SPSS, Чикаго, Иллинойс, США). Критерий p < 0.05 считали статистически значимым.

Результаты

Из 52 пациентов с резектабельной ПАК ПЖ было 32 мужчины и 20 женщин. Средний возраст больных 1-й группы составил 62 ± 12 лет, 2-й группы — 61 ± 9 лет (p > 0,05). Высокодифференцированная ПАК ПЖ выявлена у 3 больных 1-й группы и у 6 больных 2-й группы, умеренно дифференцированная ПАК ПЖ — у 14 и 12 больных, низкодифференцированная ПАК ПЖ — у 11 и 6. По результатам текстурного анализа томограмм в каждую фазу исследования для каждого типа дифференцировки ПАК ПЖ было выявлено 53 показателя. Распределение статистически значимых характеристик текстурного анализа по группам представлено в табл. 2—5. При всех типах дифференцировки ПАК ПЖ для

Таблица 2. Статистически значимые параметры текстурного анализа ПАК ПЖ для бесконтрастной фазы сканирования

Table 2. Statistically significant parameters of the texture analysis pancreatic ductal adenocarcinoma for the unenhanced scanning phase

Дифферен- цировка ПАК ПЖ	Показатель текстурного анализа	p
Высокая	GLCM_Contrast GLCM_Correlation GLCM_Dissimilarity GLRLM_SRHGE	0,0425 0,0479 0,0485 0,0484
Умеренная	PARAMS_Z Spatial Resampling GLRLM_GLNU NGLDM_Coarseness NGLDM_Busyness GLZLM_LZE GLZLM_LZLGE GLZLM_LZHGE	0,0000 0,0216 0,0407 0,0325 0,0286 0,0292 0,0286
Низкая	PARAMS_Z Spatial Resampling	0,0282

Таблица 3. Статистически значимые параметры текстурного анализа ПАК ПЖ для артериальной фазы сканирования

Table 3. Statistically significant parameters of the texture analysis pancreatic ductal adenocarcinoma for the arterial scanning phase

Дифферен- цировка ПАК ПЖ	Показатель текстурного анализа	p
Высокая	PARAMS_Z Spatial Resampling	0,0185
	GLCM_Homogeneity	0,0376
	GLCM_Dissimilarity	0,0468
	GLRLM_SRE	0,0413
	GLRLM_LRE	0,0392
	GLRLM_SRLGE	0,0388
	GLRLM_LRHGE	0,0304
	GLRLM_RP	0,0399
	GLZLM_SZE	0,0430
	GLZLM_SZLGE	0,0271
	GLZLM_GLNU	0,0288
	GLZLM_ZLNU	0,0325
Умеренная	GLCM Homogeneity	0,0238
	GLCM_Contrast	0,0267
	GLCM_Correlation	0,0167
	GLCM_Dissimilarity	0,0206
	GLRLM_SRE	0,0230
	GLRLM_LRE	0,0387
	GLRLM_SRLGE	0,0330
	GLRLM_LRHGE	0,0358
	GLRLM_RP	0,0258
	NGLDM_Contrast	0,0301
	GLZLM_ZP	0,0097
Низкая	PARAMS_Z Spatial Resampling	0,0282
	GLRLM_SRE	0,0413
	GLRLM_LRE	0,0476
	GLRLM_LRLGE	0,0442
	GLRLM_LRHGE	0,0474
	GLRLM_RP	0,0404
	GLZLM_LZE	0,0407
	GLZLM LZLGE	0,0399
	GLZLM LZHGE	0,0417

Таблица 4. Статистически значимые параметры текстурного анализа ПАК ПЖ для венозной фазы сканирования

Table 4. Statistically significant parameters of the texture analysis pancreatic ductal adenocarcinoma for the venous scanning phase

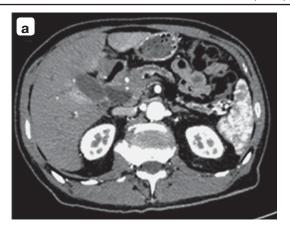
Дифферен- цировка ПАК ПЖ	Показатель текстурного анализа	p
Высокая	PARAMS_Z Spatial Resampling GLCM_Homogeneity GLCM_Contrast GLCM_Correlation GLCM_Dissimilarity GLRLM_SRE GLRLM_LRE GLRLM_LRHGE GLRLM_RP GLZLM_SZE GLZLM_SZLGE GLZLM_GLNU GLZLM_ZLNU	0,0185 0,0263 0,0451 0,0072 0,0317 0,0283 0,0306 0,0330 0,0299 0,0110 0,0241 0,0161 0,0198
Умеренная	PARAMS_Z Spatial Resampling GLCM_Homogeneity GLCM_Contrast GLCM_Correlation GLCM_Dissimilarity GLRLM_SRE GLRLM_SRHGE GLRLM_LRGE GLRLM_LRGE GLRLM_LZE GLZLM_LZE GLZLM_LZHGE GLZLM_LZHGE GLZLM_LZHGE GLZLM_LZHGE GLZLM_ZP	0,0008 0,0331 0,0210 0,0304 0,0198 0,0336 0,0204 0,0269 0,0312 0,0068 0,0053 0,0046 0,0061 0,0059
Низкая	_	_

Таблица 5. Статистически значимые параметры текстурного анализа ПАК ПЖ для отсроченной фазы сканирования

Table 5. Statistically significant parameters of the texture analysis pancreatic ductal adenocarcinoma for the delayed scanning phase

Дифференцировка ПАК ПЖ	Показатель текстурного анализа	p
Высокая	GLCM_Homogeneity GLCM_Contrast GLCM_Correlation GLCM_Entropy_log10 GLCM_Entropy_log2 GLCM_Dissimilarity GLRLM_SRE GLRLM_LRE GLRLM_SRLGE GLRLM_LRHGE GLRLM_LRHGE GLRLM_RP GLZLM_GLNU GLZLM_ZLNU	0,0281 0,0197 0,0314 0,0031 0,0357 0,0335 0,0205 0,0291 0,0315 0,0376 0,0224 0,0244 0,0235
Умеренная Низкая	NGLDM_Contrast GLZLM_LZE GLZLM_LZLGE GLZLM_LZHGE GLRLM_LGRE GLZLM_LGRE GLZLM_LGZE	0,0274 0,0083 0,0088 0,0079 0,0387 0,0467

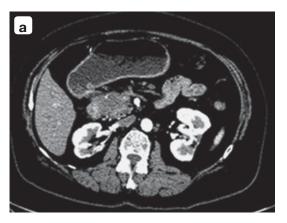
каждой фазы исследования были выявлены статистически значимые различия показателей текстурного анализа. Было выявлено менее половины статистически различных показателей текстурного анализа в каждую фазу сканирования для всех типов дифференцировки опухолей. Для нативной фазы МСКТ различались 11 (20,8%) показателей, для артериальной — 18 (34%), для венозной и отсроченной — 19 (35,8%).


Обсуждение


Дифференциальная диагностика различных опухолей ПЖ остается проблемой современной рентгенологии, несмотря на появление множества новых методик визуализации [17]. Сложность в диагностике и лечении ПАК заключается в ее высокой агрессивности уже при небольших размерах, большой частоте ложноотрицательных результатов исследований, направленных на ее выявление [18]. Увеличение точности методов, применяемых при диагностике рака ПЖ, может стать одной из приоритетных задач современной абдоминальной лучевой диагностики.

К росту числа КТ-исследований приводит увеличивающееся число выявляемых онкологических заболеваний. Неизбежным результатом КТ является лучевая нагрузка [19]. Первые попытки уменьшения лучевой нагрузки начали предпринимать еще в конце XX века, когда пытались внести изменения в такие параметры сканирования, как коллимация рентгеновского луча, питч, время ротации гентри [20]. В настоящее время практически во всех компьютерных томографах предусмотрены программы низкодозового сканирования с различными итеративными алгоритмами реконструкции. В зарубежной и отечественной литературе можно отметить нарастание интереса к этой проблеме, но стоит заметить, что подавляющее число публикаций посвящено КТ-ангиографии [21, 22].

Напряжение на рентгеновской трубке томографа является еще одним регулируемым параметром при КТ. Внесение изменений в этот параметр приводит к значительному изменению лучевой нагрузки, уровня шума, отношения "контраст—шум" [23, 24].


Уменьшение лучевой нагрузки на пациента возможно благодаря влиянию на проникающие свойства рентгеновского излучения, "k-edge effect". Проникающая способность излучения уменьшается при падении энергии фотонов рентгеновского излучения, что приводит к увеличенной их задержке в тканях организма, в том числе атомами йода. В одном из исследований было показано, что уменьшение напряжения на трубке до 80 кВ позволяет уменьшить лучевую нагрузку более чем на 70% [25]. В другом исследовании было установлено, что низкодозовый протокол КТ (80 кВ) улучшает отображение рака

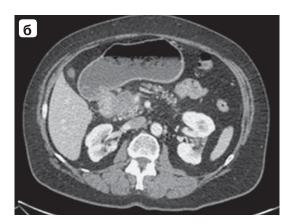


Рис. 2. Компьютерная томограмма. Протоковая аденокарцинома головки ПЖ, артериальная и венозная фазы, стандартный протокол сканирования (120 кВ): **a** — оценка головки ПЖ; **б** — оценка тела и хвоста ПЖ.

Fig. 2. CT-scan. Pancreatic head ductal adenocarcinoma, arterial and venous phases, standard scanning protocol (120 kV): **a** – analysis of the pancreatic head; **6** – analysis of the body and tail of the pancreas.

Рис. 3. Компьютерная томограмма. Протоковая аденокарцинома головки $\Pi \mathbb{X}$, артериальная и венозная фазы, низкодозовый протокол сканирования (100 кВ): \mathbf{a} — оценка головки $\Pi \mathbb{X}$; $\mathbf{б}$ — оценка тела и хвоста $\Pi \mathbb{X}$.

Fig. 3. T-scan. Pancreatic head ductal adenocarcinoma, arterial and venous phases, low-dose scanning protocol (100 kV). \mathbf{a} – analysis of the pancreatic head; $\mathbf{6}$ – analysis of the body and tail of the pancreas.

ПЖ по сравнению со стандартным протоколом [10]. Таким образом, применение низкодозовых протоколов сканирования при исследовании пациентов с ПАК ПЖ улучшает "видимость" образования на фоне неизмененной паренхимы железы (рис. 2, 3).

В обсуждаемом исследовании различия ИМТ между группами пациентов не были статистически значимыми, однако стоит отметить, что применение низкодозовых протоколов сканирования у пациентов с большим ИМТ является предметом дискуссии. По собственным неопубликованным данным и по данным работ других авторов, наиболее важным является не ИМТ, а окружность брюшной полости.

В мировой литературе описано применение текстурного анализа в дифференциальной диагностике ПАК ПЖ, при оценке результатов и прогнозировании резектабельности опухоли после неоадъювантной химиотерапии. Изучая воспроизводимость показателей текстурного анализа при ПАК ПЖ, исследователи учитывали различ-

ные характеристики протокола сканирования: модель сканера, протокол сканирования, толщину среза, расстояние между пикселями, напряжение на трубке, ток трубки, время экспозиции, индекс шума, дозу и скорость введения контрастного препарата. Было установлено, что воспроизводимость больше зависит от различий сканирования, чем от сегментации [13]. Однако не было найдено ни одной работы, в которой было бы изучено влияние уменьшения напряжения на трубке на показатели текстурного анализа.

В обсуждаемом исследовании были получены статистически значимые показатели текстурного анализа во все фазы протокола сканирования. Таким образом, ряд показателей текстурного анализа (см. табл. 2—5) в каждую фазу сканирования нельзя достоверно применять для прогнозирования степени дифференцировки ПАК ПЖ до операции.

По собственным данным, а также данным других авторов [26], наиболее чувствительным и специфичным показателем текстурного ана-

лиза в прогнозировании степени дифференцировки ПАК ПЖ до операции является куртозис. С учетом полученных данных, диагностическая точность этого показателя не зависит от изменения напряжения на трубке в протоколе КТ. При изучении 88 пациентов с резектабельным раком головки ПЖ было обнаружено, что корреляция GLCM_Contrast и GLCM_Correlation была связана с безрецидивной выживаемостью [27]. В представленном же исследовании эти показатели не обладали достоверной диагностической точностью при изменении параметров сканирования.

В недавних исследованиях [26, 28] параметры GLCM_Correlation и Entropy были одними из наиболее важных характеристик, позволявших дифференцировать ткань нормальной ПЖ от новообразования; также была выявлена связь между метастатическим поражением лимфатических узлов и морфологической оценкой края резекции. В обсуждаемом исследовании Entropy показала достоверную диагностическую точность при применении как стандартного (120 кВ), так и низкодозового (100 кВ) протокола сканирования.

Представленное исследование имеет ряд ограничений. Во-первых, модификации протоколов исследования были применены при обследовании разных пациентов, поскольку ретроспективно сложно выявить больных, которым дважды выполняли КТ по единому протоколу. Во-вторых, не оценивали влияние каждого параметра сканирования (модели сканера, толщины среза, контрастного препарата и т.д.) на воспроизводимость показателей ввиду малой выборки. В-третьих, обработку данных для текстурного анализа выполнял один рентгенолог. Дальнейшее исследование позволит выявить значимые параметры, влияющие на диагностическую точность, и позволит упростить стандартизацию протоколов сканирования для текстурного анализа.

Заключение

Низкодозовые исследования привнесли в диагностическую практику возможность модификации протоколов КТ-сканирования, в том числе возможность уменьшения напряжения и силы тока на рентгеновской трубке с сохранением достаточного диагностического качества за счет применения современных итеративных алгоритмов реконструкции. Таким образом, применение низкодозовых исследований у пациентов с ПАК ПЖ позволяет не только уменьшить лучевую нагрузку на пациента, но и сохранить и даже улучшить диагностическое качество проведенного исследования.

При применении текстурного анализа более половины текстурных показателей ПАК ПЖ остаются диагностически значимыми для всех фаз исследования, позволяя выбрать те из них,

которые могут быть надежно использованы для предоперационной оценки дифференцировки образования.

Применение выявленных текстурных показателей на базе исследований одного учреждения представляется наиболее точным, поскольку позволит использовать их в низкодозовых протоколах сканирования.

В то же время полученные результаты ограничены условиями одного учреждения. В дальнейшем возможно определение универсальных показателей текстурного анализа, которые можно будет использовать для оценки компьютерных томограмм, выполненных в разных условиях с сохранением диагностической точности.

Участие авторов

Тихонова В.С. – концепция и дизайн исследования, сбор и обработка материала, статистическая обработка данных, написание текста.

Кармазановский Г.Г. – концепция и дизайн исследования, редактирование, утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.

Кондратьев Е.В. – концепция и дизайн исследования, редактирование.

Груздев И.С. – концепция и дизайн исследования, редактирование.

Глотов А.В. – концепция и дизайн исследования.

Authors participation

Tikhonova V.S. – concept and design of the study, collection and processing of material, statistical analysis, writing text.

Karmazanovsky G.G. — concept and design of the study, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article.

Kondratiev E.V. - concept and design of the study, editing.

Gruzdev I.S. — concept and design of the study, editing. Glotov A.V. — concept and design of the study.

Список литературы [References]

- Zhou Q., Melton D.A. Pancreas regeneration. *Nature*. 2018; 557 (7705): 351–358. https://doi.org/10.1038/s41586-018-0088-0.
- 2. Leung P.S. Physiology of the pancreas. *Adv. Exp. Med. Biol.* 2010; 690: 13–27. https://doi.org/10.1007/978-90-481-9060-7_2
- 3. McGuigan A., Kelly P., Turkington R.C., Jones C., Coleman H.G., McCain R.S. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. *World J. Gastroenterol.* 2018; 24 (43): 4846–4861. https://doi.org/10.3748/wjg.v24.i43.4846
- Mostafa M.E., Erbarut-Seven I., Pehlivanoglu B., Adsay V. Pathologic classification of "pancreatic cancers": current concepts and challenges. *Chin. Clin. Oncol.* 2017; 6 (6): 59–59. https://doi.org/10.21037/cco.2017.12.01
- Ansari D., Tingstedt B., Andersson B., Holmquist F., Sturesson C., Williamsson C., Sasor A., Borg D., Bauden M., Andersson R. Pancreatic cancer: yesterday, today and tomorrow. *Future Oncol.* 2016; 12 (16): 1929–1946. https://doi.org/10.2217/fon-2016-0010

- Lu D.S., Vedantham S., Krasny R.M., Kadell B., Berger W.L., Reber H.A. Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. *Radiology*. 1996; 199 (3): 697–701. https://doi.org/10.1148/radiology.199.3.8637990
- Treadwell J.R., Zafar H.M., Mitchell M.D., Tipton K., Teitelbaum U., Jue J. Imaging tests for the diagnosis and staging of pancreatic adenocarcinoma: a meta-analysis. *Pancreas*. 2016; 45 (6): 789–795. https://doi.org/10.1097/MPA.00000000000000524
- Bronstein Y.L., Loyer E.M., Kaur H., Choi H., David C., DuBrow R.A., Broemeling L.D., Cleary K.R., Charnsangavej C. Detection of small pancreatic tumors with multiphasic helical CT. AJR. Am. J. Roentgenol. 2004; 182 (3): 619–623. https://doi.org/10.2214/ajr.182.3.1820619
- Prokesch R.W., Chow L.C., Beaulieu C.F., Bammer R., Jeffrey Jr. R.B. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. *Radiology*. 2002; 224 (3): 764–768. https://doi.org/10.1148/radiol.2243011284.
- Holm J., Loizou L., Albiin N., Kartalis N., Leidner B., Sundin A. Low tube voltage CT for improved detection of pancreatic cancer: detection threshold for small, simulated lesions. *BMC Med. Imaging*. 2012; 12 (1): 1–9. https://doi.org/10.1186/1471-2342-12-20
- Machicado J.D., Koay E.J., Krishna S.G. Radiomics for the diagnosis and differentiation of pancreatic cystic lesions. *Diagnostics*. 2020; 10 (7): 505. https://doi.org/10.3390/diagnostics10070505
- 12. Goyen M. Radiogenomic imaging-linking diagnostic imaging and molecular diagnostics. *World J. Radiol.* 2014; 6 (8): 519–522. https://doi.org/10.4329/wjr.v6.i8.519
- Yamashita R., Perrin T., Chakraborty J., Chou J.F., Horvat N., Koszalka M.A., Midya A., Gonen M., Allen P., Jarnagin W.R., Simpson A.L. Radiomic feature reproducibility in contrastenhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. *Eur. Radiol.* 2020; 30 (1): 195–205. https://doi.org/10.1007/s00330-019-06381-8
- Nagtegaal I.D., Odze R.D., Klimstra D., Paradis V., Rugge M., Schirmacher P., Washington K.M., Carneiro F., Cree I.A., WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. *Histopathology*. 2020; 76 (2): 182–188. https://doi.org/10.1111/his.13975
- 15. Washington M.K., Berlin J., Branton P.A., Burgart L.J., Carter D.K., Compton C.C., Fitzgibbons P.L., Frankel W.L., Jessup J.M., Kakar S., Minsky B., Nakhleh R.E., Vauthey J.N., Members of the Cancer Committee, College of American Pathologists. Protocol for the examination of specimens from patients with carcinoma of the distal extrahepatic bile ducts. *Arch. Pathol. Lab. Med.* 2010; 134 (4): 8–13. https://doi.org/10.1043/1543-2165-134.4.e8
- Nioche C., Orlhac F., Boughdad S., Reuzé S., Goya-Outi J., Robert C., Pellot-Barakat C., Soussan M., Frouin F., Buvat I. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. *Cancer Res.* 2018; 78 (16): 4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125
- Mei S., Wang M., Sun L. Contrast-enhanced EUS for differential diagnosis of pancreatic masses: a meta-analysis. *Gastroenterol. Res. Pract.* 2019; 2019: 1670183. https://doi.org/10.1155/2019/1670183

- 18. Parkin D.M., Bray F., Ferlay J., Pisani P. Estimating the world cancer burden: Globocan 2000. *Int. J. Cancer.* 2001; 94 (2): 153–156. https://doi.org/10.1002/ijc.1440
- 19. Тюрин И.Е. Лучевая диагностика в Российской Федерации в 2016 г. Вестник рентгенологии и радиологии. 2016; 98 (4): 219–226.
 - [Tyurin I.E. Radiology in the Rassian Federation in 2016. *Journal of radiology and nuclear medicine*. 2016; 98 (4): 219–226. https://doi.org/10.20862/0042-4676-2017-98-4-219-226 (In Russian)]
- Seeram E. Radiation dose in computed tomography. *Radiol. Technol.* 1999; 70 (6): 534–556.
- Scheffel H., Alkadhi H., Leschka S., Plass A., Desbiolles L., Guber I., Krauss T., Gruenenfelder J., Genoni M., Luescher T.F., Marincek B., Stolzmann P. Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. *Heart* (*British Cardiac Society*). 2008; 94 (9): 1132–1137. https://doi.org/10.1136/hrt.2008.149971
- Kondratyev E., Karmazanovsky G. Low radiation dose 256-MDCT angiography of the carotid arteries: effect of hybrid iterative reconstruction technique on noise, artifacts, and image quality. *Eur. J. Radiol.* 2013; 82 (12): 2233–2239. https://doi.org/10.1016/j.ejrad.2013.08.053
- Pregler B., Beyer L.P., Teufel A., Niessen C., Stroszczynski C., Brodoefel H., Wiggermann P. Low tube voltage liver MDCT with sinogram-affirmed iterative reconstructions for the detection of hepatocellular carcinoma. *Sci. Rep.* 2017; 7 (1): 9460. https://doi.org/10.1038/s41598-017-10095-6
- Zhang H., Ma Y., Lyu J., Yang Y., Yuan W., Song Z. Low kV and low concentration contrast agent with iterative reconstruction of computed tomography (CT) coronary angiography: a preliminary study. *Med. Sci. Monit.* 2017; 23: 5005–5010. https://doi.org/10.12659/msm.904251
- Marin D., Choudhury K.R., Gupta R.T., Ho L.M., Allen B.C., Schindera S.T., Colsher J.G., Samei E., Nelson R.C. Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumours using a low tube voltage, high tube current MDCT technique. *Eur. Radiol.* 2013; 23 (12): 3325–3335. https://doi.org/10.1007/s00330-013-2964-1
- Kulkarni A., Carrion-Martinez I., Jiang N.N., Puttagunta S., Ruo L., Meyers B.M., Aziz T., van der Pol C.B. Hypovascular pancreas head adenocarcinoma: CT texture analysis for assessment of resection margin status and high-risk features. *Eur. Radiol.* 2020; 30 (5): 2853–2860. https://doi.org/10.1007/s00330-019-06583-0
- Yun G., Kim Y.H., Lee Y.J., Kim B., Hwang J.H., Choi D.J. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. *Sci. Rep.* 2018; 8 (1): 7226. https://doi.org/10.1038/s41598-018-25627-x
- 28. Chu L.C., Park S., Kawamoto S., Fouladi D.F., Shayesteh S., Zinreich E.S., Graves J.S., Horton K.M., Hruban R.H., Yuille A.L., Kinzler K.W., Vogelstein B., Fishman E.K. Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. *AJR. Am. J. Roentgenol.* 2019; 213 (2): 349–357. https://doi.org/10.2214/AJR.18.20901

Сведения об авторах [Authors info]

Тихонова Валерия Сергеевна — аспирант отделения рентгенологии и магнитно-резонансных исследований ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. https://orcid.org/0000-0001-9782-7335. E-mail: vdovenkobc28@mail.ru

Кармазановский Григорий Григорьевич — доктор мед. наук, член-корр. РАН, профессор, заведующий отделением рентгенологии и магнитно-резонансных исследований с кабинетом ультразвуковой диагностики ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России; профессор кафедры лучевой диагностики и терапии медико-биологического факультета ФГБОУ ВО "РНИМУ им. Н.И. Пирогова" Минздрава России. https://orcid.org/0000-0002-9357-0998. E-mail: karmazanovsky@ixv.ru

Кондратьев Евгений Валерьевич — канд. мед. наук, старший научный сотрудник отделения рентгенологии и магнитнорезонансных исследований ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. https://orcid.org/0000-0001-7070-3391. E-mail: evgenykondratiev@gmail.com

Груздев Иван Сергеевич — аспирант отделения рентгенологии и магнитно-резонансных исследований ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. https://orcid.org/0000-0003-0781-9898. E-mail: gruzdev_van@mail.ru **Глотов Андрей Вячеславович** — врач-патологоанатом патологоанатомического отделения ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. https://orcid.org/0000-0002-6904-9318. E-mail: andrew.glotov@mail.ru

Для корреспонденции *: Тихонова Валерия Сергеевна — 117997, г. Москва, ул. Большая Серпуховская, д. 27, Российская Федерация. Отделение рентгенологии и магнитно-резонансных исследований ФГБУ "НМИЦ хирургии им. А.В. Вишневского" Минздрава России. Тел.: 8-929-938-18-49. E-mail: vdovenkobc28@mail.ru

Valeriya S. Tikhonova — Graduate Student of the Radiology Department, Vishnevsky National Medical Research Centre of Surgery, Moscow. https://orcid.org/0000-0001-9782-7335. E-mail: vdovenkobc28@mail.ru

Grigory G. Karmazanovsky – Doct. of Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Radiology Department of the Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation; Professor of the Radiology Department of the Pirogov Russian National Research Medical University of the Ministry of Health of Russian Federation, Moscow. https://orcid.org/0000-0002-9357-0998. E-mail: karmazanovsky@ixv.ru

Evgeny V. Kondratyev – Cand. of Sci. (Med.), Senior Researcher of Radiology Department, Vishnevsky National Medical Research Centre of Surgery, Moscow. https://orcid.org/0000-0001-7070-3391. E-mail: evgenykondratiev@gmail.com

Ivan S. Gruzdev — Graduate Student of Radiology Department, Vishnevsky National Medical Research Centre of Surgery, Moscow. https://orcid.org/0000-0003-0781-9898. E-mail: gruzdev_van@mail.ru

Andrey V. Glotov – Pathologist of the Pathological Department, Vishnevsky National Medical Research Centre of Surgery, Moscow. https://orcid.org/0000-0002-6904-9318. E-mail: andrew.glotov@mail.ru

*For correspondence**: Valeriya S. Tikhonova – 27, Bolshaya Serpukhovskaya str., Moscow, 117997, Russian Federation. Vishnevsky National Medical Research Center of Surgery. Phone: 8-929-938-18-49. E-mail: vdovenkobc28@mail.ru

Статья поступила в редакцию журнала 13.11.2020. Received 13 November 2020. Принята к публикации 17.12.2020. Accepted for publication 17 December 2020.