Preview

Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery

Advanced search

Characteristics of intestinal microbiota in the pathogenesis and clinical course of acute pancreatitis

https://doi.org/10.16931/1995-5464.2024-4-135-143

Abstract

Aim. To analyze the most promising scientific and practical directions regarding the role of intestinal microbiota and its metabolites in the pathogenesis and clinical course of acute pancreatitis.

Materials and methods. The study involved a systematic literature review of the databases PubMed, EMBASE, and Cochrane for the last 20 years. A total of 5 meta-analyses, 234 clinical trials, 127 reviews, and 428 experimental studies were identified. Ultimately, 36 clinical trials, 2 reviews, and 18 experimental studies were selected for the inclusion. The systematic review was carried out in accordance with PRISMA recommendations.

Results. The structure of the intestinal microbiota significantly differs in healthy control groups and patients with acute pancreatitis. The microbiota of patients with acute pancreatitis closely correlates with systemic inflammation and intestinal barrier dysfunction. Cases of severe acute pancreatitis revealed an increase in Enterococcus, Proteobacteria, Escherichia, and Shigella, alongside a decrease in overall microbiome diversity and in Bifidobacterium, Prevotella, Faecalibacterium, Blautia, Lachnospiraceae, and Ruminococcaceae. Short-chain fatty acids, the concentration of which in the blood may indicate an increase in intestinal wall permeability, are directly involved in the pathogenesis of acute lung injury associated with acute pancreatitis.

Conclusion. Further study into the composition of the intestinal microbiota, its metabolites, and potential modulation strategies in various patient groups obtains high potential as a foundation for new diagnostic, therapeutic, and preventive approaches to acute pancreatitis.

About the Authors

A. A. Sitsskiy
Immanuel Kant Baltic Federal University
Russian Federation

Andrey A. Sitsskiy – Assistant, Department of Surgical Disciplines, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., Kaliningrad, 236041



V. V. Kakotkin
Immanuel Kant Baltic Federal University
Russian Federation

Viktor V. Kakotkin – Assistant, Department of Surgical Disciplines, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., Kaliningrad, 236041



M. A. Agapov
Immanuel Kant Baltic Federal University
Russian Federation

Mikhail A. Agapov – Doct. of Sci. (Med.), Head of the Educational-Scientific Cluster “MEDBIO”, Professor, Department of Surgical Disciplines, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., Kaliningrad, 236041



References

1. Dyuzheva T.G., Dzhus E.V., Shefer A.V., Semenenko I.A., Platonova L.V., Galperin E.I. Parapancreatitis without CT-signs of pancreatic necrosis in patients with acute pancreatitis. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2016; 21 (2): 68–72. https://doi.org/10.16931/1995-5464.2016268-72 (In Russian)

2. Ferreira Ade F., Bartelega J.A., Urbano H.C., de Souza I.K. Acute pancreatitis gravity predictive factors: which and when to use them? Arq. Bras. Cir. Dig. 2015; 28 (3): 207–211. https://doi.org/10.1590/S0102-67202015000300016

3. Aliyeva G.R., Muslumov G.F., Bayramov B.I., Zeynalov N.D., Behbudov V.V. Association between heme oxygenase-1 (HMOX1) gene polymorphism and chronic pancreatitis. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2022; 27 (1): 56–63. https://doi.org/10.16931/1995-5464.2022-1-56-63 (In Russian)

4. Baichorov E.Kh., Baturin V.A., Gandzha N.S., Salpagarov Sh.R., Bairamukov R.R. Antimicrobial peptides and Ubiquitin protein ligase E3 in destructive forms of pancreatitis. Medical & pharmaceutical journal ‘Pulse’. 2020; 22 (10): 74–80. https://doi.org/10.26787/nydha-2686-6838-2020-22-10-74-80 (In Russian)

5. Watanabe T., Kudo M., Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017; 10 (2): 283–298. https://doi.org/10.1038/mi.2016.101

6. Peng C., Li Z., Yu X. The Role of pancreatic infiltrating innate immune cells in acute pancreatitis. Int. J. Med. Sci. 2021; 18 (2): 534–545. https://doi.org/10.7150/ijms.51618

7. Capurso G., Zerboni G., Signoretti M., Valente R., Stigliano S., Piciucchi M., Delle Fave G. Role of the gut barrier in acute pancreatitis. J. Clin. Gastroenterol. 2012; 46 (Suppl): S46–51. https://doi.org/10.1097/MCG.0b013e3182652096

8. Wang X., Gong Z., Wu K., Wang B., Yuang Y. Gastrointestinal dysmotility in patients with acute pancreatitis. J. Gastroenterol. Hepatol. 2003; 18 (1): 57–62. https://doi.org/10.1046/j.1440-1746.2003.02898.x

9. Van Felius I.D., Akkermans L.M., Bosscha K., Verheem A., Harmsen W., Visser M.R., Gooszen H.G. Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol. Motil. 2003;15(3):267–276.https://doi.org/10.1046/j.1365-2982.2003

10. Gao S.L., Zhang Y., Zhang S.Y., Liang Z.Y., Yu W.Q., Liang T.B. The hydrocortisone protection of glycocalyx on the intestinal capillary endothelium during severe acute pancreatitis. Shock. 2015; 43 (5): 512–517. https://doi.org/10.1097/SHK.0000000000000326

11. Wang F., Li Q., Wang C., Tang C., Li J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS One. 2012; 7 (7): e42027. https://doi.org/10.1371/journal.pone.0042027

12. Albenberg L., Esipova T.V., Judge C.P., Bittinger K., Chen J., Laughlin A., Grunberg S., Baldassano R.N., Lewis J.D., Li H., Thom S.R., Bushman F.D., Vinogradov S.A., Wu G.D. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014; 147 (5): 1055–1063.e8. https://doi.org/10.1053/j.gastro.2014.07.020

13. Darnaud M., Dos Santos A., Gonzalez P., Augui S., Lacoste C., Desterke C., De Hertogh G., Valentino E., Braun E., Zheng J., Boisgard R., Neut C., Dubuquoy L., Chiappini F., Samuel D., Lepage P., Guerrieri F., Doré J., Bréchot C., Moniaux N., Faivre J. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology. 2018; 154 (4): 1009–1023. e14. https://doi.org/10.1053/j.gastro.2017.11.003

14. Kylänpää-Bäck M.L., Takala A., Kemppainen E., Puolakkainen P., Kautiainen H., Jansson S.E., Haapiainen R., Repo H. Cellular markers of systemic inflammation and immune suppression in patients with organ failure due to severe acute pancreatitis. Scand. J. Gastroenterol. 2001; 36 (10): 1100–1107. https://doi.org/10.1080/003655201750422738

15. Zhao D., Yang F., Wang Y., Li S., Li Y., Hou F., Yang W., Liu D., Tao Y., Li Q., Wang J., He F., Tang L. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J. Clin. Invest. 2022; 132 (3): e150489. https://doi.org/10.1172/JCI150489

16. Shirey K.A., Blanco J.C.G., Vogel S.N. Targeting TLR4 signaling to blunt viral-mediated acute lung injury. Front. Immunol. 2021; 12: 705080. https://doi.org/10.3389/fimmu.2021.705080

17. Techarang T., Jariyapong P., Viriyavejakul P., Punsawad C. High mobility group box-1 (HMGB-1) and its receptors in the pathogenesis of malaria-associated acute lung injury/acute respiratory distress syndrome in a mouse model. Heliyon. 2021; 7 (12): e08589. https://doi.org/10.1016/j.heliyon.2021.e08589

18. Cheng P., Li S., Chen H. Macrophages in lung injury, repair, and fibrosis. Cells. 2021; 10 (2): 436. https://doi.org/10.3390/cells10020436

19. Dickson R.P., Schultz M.J., van der Poll T., Schouten L.R., Falkowski N.R., Luth J.E., Sjoding M.W., Brown C.A., Chanderraj R., Huffnagle G.B., Bos L.D.J. Biomarker Analysis in Septic ICU Patients (BASIC) Consortium. Lung microbiota predict clinical outcomes in critically ill patients. Am. J. Respir. Crit. Care Med. 2020; 201 (5): 555–563. https://doi.org/10.1164/rccm.201907-1487OC

20. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., Bork P., Ehrlich S.D., Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464 (7285): 59–65. https://doi.org/10.1038/nature08821

21. Li X.Y., He C., Zhu Y., Lu N.H. Role of gut microbiota on intestinal barrier function in acute pancreatitis. World J. Gastroenterol. 2020; 26 (18): 2187–2193. https://doi.org/10.3748/wjg.v26.i18.2187

22. Tan C., Ling Z., Huang Y., Cao Y., Liu Q., Cai T., Yuan H., Liu C., Li Y., Xu K. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas. 2015; 44 (6): 868–875. https://doi.org/10.1097/MPA.0000000000000355

23. Gerritsen J., Timmerman H.M., Fuentes S., van Minnen L.P., Panneman H., Konstantinov S.R., Rombouts F.M., Gooszen H.G., Akkermans L.M., Smidt H., Rijkers G.T. Correlation between protection against sepsis by probiotic therapy and stimulation of a novel bacterial phylotype. Appl. Environ. Microbiol. 2011; 77 (21): 7749–7756. https://doi.org/10.1128/AEM.05428-11

24. Zhang X.M., Zhang Z.Y., Zhang C.H., Wu J., Wang Y.X., Zhang G.X. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed. Environ. Sci. 2018; 31 (1): 81–86. https://doi.org/10.3967/bes2018.010

25. Van den Berg F.F., van Dalen D., Hyoju S.K., van Santvoort H.C., Besselink M.G., Wiersinga W.J., Zaborina O., Boermeester M.A., Alverdy J. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate. Gut. 2021; 70 (5): 915–927. https://doi.org/10.1136/gutjnl-2019-320430

26. Zhu Y., He C., Li X., Cai Y., Hu J., Liao Y., Zhao J., Xia L., He W., Liu L., Luo C., Shu X., Cai Q., Chen Y., Lu N. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. J. Gastroenterol. 2019; 54 (4): 347–358. https://doi.org/10.1007/s00535-018-1529-0

27. Zhu Y., Mei Q., Fu Y., Zeng Y. Alteration of gut microbiota in acute pancreatitis and associated therapeutic strategies. Biomed. Pharmacother. 2021; 141: 111850. https://doi.org/10.1016/j.biopha.2021.111850

28. Li Q., Gao S., Ma J., Liu S., Yue Y., Chen L., Li H., Wang X., Li D., Cao Z., Zhao Z., Wang X., Yu Y., Zhang Y., Wang Y. A lower ALC/AMC ratio is associated with poor prognosis of peripheral T-cell lymphoma-not otherwise specified. Leuk. Res. 2018; 73: 5–11. https://doi.org/10.1016/j.leukres.2018.07.020

29. Wang G., Wen J., Xu L., Zhou S., Gong M., Wen P., Xiao X. Effect of enteral nutrition and ecoimmunonutrition on bacterial translocation and cytokine production in patients with severe acute pancreatitis. J. Surg. Res. 2013; 183 (2): 592–597. https://doi.org/10.1016/j.jss.2012.12.010

30. Yu E.W., Gao L., Stastka P., Cheney M.C., Mahabamunuge J., Torres Soto M., Ford C.B., Bryant J.A., Henn M.R., Hohmann E.L. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 2020; 17 (3): e1003051. https://doi.org/10.1371/journal.pmed.1003051

31. Chen J., Huang C., Wang J., Zhou H., Lu Y., Lou L., Zheng J., Tian L., Wang X., Cao Z., Zeng Y. Dysbiosis of intestinal microbiota and decrease in Paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One. 2017; 12 (4): e0176583. https://doi.org/10.1371/journal.pone.0176583

32. Schietroma M., Pessia B., Carlei F., Mariani P., Sista F., Amicucci G. Intestinal permeability and systemic endotoxemia in patients with acute pancreatitis. Ann. Ital. Chir. 2016; 87: 138–144.

33. Wang L., Jin Y.L., Pei W.L., Li J.C., Zhang R.L., Wang J.J., Lin W. Amuc_1100 pretreatment alleviates acute pancreatitis in a mouse model through regulating gut microbiota and inhibiting inflammatory infiltration. Acta Pharmacol. Sin. 2024; 45 (3): 570–580. https://doi.org/10.1038/s41401-023-01186-4

34. Mc Glone E.R., Bloom S.R. Bile acids and the metabolic syndrome. Ann. Clin. Biochem. 2019; 56 (3): 326–337. https://doi.org/10.1177/0004563218817798

35. Ratajczak W., Rył A., Mizerski A., Walczakiewicz K., Sipak O., Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 2019; 66 (1): 1–12. https://doi.org/10.18388/abp.2018_2648

36. Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug. Discov. 2008; 7 (8): 678–693. https://doi.org/10.1038/nrd2619

37. Ye S., Si C., Deng J., Chen X., Kong L., Zhou X., Wang W. Understanding the effects of metabolites on the gut microbiome and severe acute pancreatitis. Biomed. Res. Int. 2021; 2021: 1516855. https://doi.org/10.1155/2021/1516855

38. Liu Q., Yu Z., Tian F., Zhao J., Zhang H., Zhai Q., Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 2020; 19 (1): 23. https://doi.org/10.1186/s12934-020-1289-4

39. Ma H., Patti M.E. Bile acids, obesity, and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014; 28 (4): 573–583. https://doi.org/10.1016/j.bpg.2014.07.004

40. Ðanić M., Stanimirov B., Pavlović N., Goločorbin-Kon S., Al-Salami H., Stankov K., Mikov M. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front. Pharmacol. 2018; 9: 1382. https://doi.org/10.3389/fphar.2018.01382

41. Kuno T., Hirayama-Kurogi M., Ito S., Ohtsuki S. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci. Rep. 2018; 8 (1): 1253. https://doi.org/10.1038/s41598-018-19545-1

42. Duboc H., Rajca S., Rainteau D., Benarous D., Maubert M.A., Quervain E., Thomas G., Barbu V., Humbert L., Despras G., Bridonneau C., Dumetz F., Grill J.P., Masliah J., Beaugerie L., Cosnes J., Chazouillères O., Poupon R., Wolf C., Mallet J.M., Langella P., Trugnan G., Sokol H., Seksik P. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013; 62 (4): 531–539. https://doi.org/10.1136/gutjnl-2012-302578

43. Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. Butyrate: a double-edged sword for health? Adv. Nutr. 2018; 9 (1): 21–29. https://doi.org/10.1093/advances/nmx009

44. Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 2014; 111 (6): 2247–2252. https://doi.org/10.1073/pnas.1322269111

45. Breyner N.M., Michon C., de Sousa C.S., Vilas Boas P.B., Chain F., Azevedo V.A., Langella P., Chatel J.M. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front. Microbiol. 2017; 8: 114. https://doi.org/10.3389/fmicb.2017.00114

46. Li G., Lin J., Zhang C., Gao H., Lu H., Gao X., Zhu R., Li Z., Li M., Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021; 13 (1): 1968257. https://doi.org/10.1080/19490976.2021.1968257

47. Gao L., Chong E., Pendharkar S., Hong J., Windsor J.A., Ke L., Li W., Phillips A. The Effects of NLRP3 inflammasome inhibition in experimental acute pancreatitis: a systematic review and meta-analysis. Pancreas. 2022; 51 (1): 13–24. https://doi.org/10.1097/MPA.0000000000001971

48. Sendler M., van den Brandt C., Glaubitz J., Wilden A., Golchert J., Weiss F.U., Homuth G., De Freitas Chama L.L., Mishra N., Mahajan U.M., Bossaller L., Völker U., Bröker B.M., Mayerle J., Lerch M.M. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology. 2020; 158 (1): 253–269.e14. https://doi.org/10.1053/j.gastro.2019.09.040

49. Cen M.E., Wang F., Su Y., Zhang W.J., Sun B., Wang G. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis. Apoptosis. 2018; 23 (7–8): 377–387. https://doi.org/10.1007/s10495-018-1464-9

50. Rongione A.J., Kusske A.M., Kwan K., Ashley S.W., Reber H.A., McFadden D.W. Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology. 1997; 112 (3): 960–967. https://doi.org/10.1053/gast.1997.v112.pm9041259

51. Gallyamov E.A., Agapov M.A., Lutsevich O.E., Kakotkin V.V. Advanced technologies for treatment of infected pancreatic necrosis: differentiated approach. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2020; 25 (1): 69–78. https://doi.org/10.16931/1995-5464.2020169-78 (In Russian)

52. Zou X.P., Chen M., Wei W., Cao J., Chen L., Tian M. Effects of enteral immunonutrition on the maintenance of gut barrier function and immune function in pigs with severe acute pancreatitis. JPEN J. Parenter. Enteral. Nutr. 2010; 34 (5): 554–566. https://doi.org/10.1177/0148607110362691

53. Jin Y., Xu H., Chen Y., Wu J., Jin F., Wu Q., Yao X.M. Therapeutic effect of Bifidobacterium combined with early enteral nutrition in the treatment of severe acute pancreatitis: a pilot study. Eur. Rev. Med. Pharmacol. Sci. 2018; 22 (12): 4018–4024. https://doi.org/10.26355/eurrev_201806_15288

54. Mei Q.X., Hu J.H., Huang Z.H., Fan J.J., Huang C.L., Lu Y.Y., Wang X.P., Zeng Y. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis. Acta Pharmacol. Sin. 2021; 42 (6): 942–953. https://doi.org/10.1038/s41401-020-00581-5

55. Bachmann K., Freitag M., Lohalm H., Tomkötter L., Dupree A., Koops S., Strate T., Izbicki J.R., Mann O. Effects of hydroxyethyl starch and cell-free hemoglobin on microcirculation, tissue oxygenation, and survival in severe acute porcine pancreatitis: results of a randomized experimental trial. Pancreas. 2014; 43 (6): 855–862. https://doi.org/10.1097/MPA.0000000000000146

56. He Y., Wu C., Li J., Li H., Sun Z., Zhang H., de Vos P., Pan L.L., Sun J. Corrigendum: inulin-type fructans modulates pancreatic-gut innate immune responses and gut barrier integrity during experimental acute pancreatitis in a chain length-dependent manner. Front. Immunol. 2018; 9: 812. https://doi.org/10.3389/fimmu.2018.00812


Supplementary files

Review

For citations:


Sitsskiy A.A., Kakotkin V.V., Agapov M.A. Characteristics of intestinal microbiota in the pathogenesis and clinical course of acute pancreatitis. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2024;29(4):135-143. (In Russ.) https://doi.org/10.16931/1995-5464.2024-4-135-143

Views: 189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-5464 (Print)
ISSN 2408-9524 (Online)