Assessment of a CT-based radiomics model for predicting hepatocellular carcinoma grade
https://doi.org/10.16931/1995-5464.2025-4-44-51
Abstract
Aim. To assess the effectiveness and feasibility of CT radiomics-based machine-learning models for hepatocellular carcinoma diagnosis.
Materials and Methods. The study included 42 patients with pathologically confirmed hepatocellular carcinoma. All patients underwent surgery or received medical advice between January 2013 and December 2022. Machinelearning algorithms were used to evaluate texture analysis data from preoperative CT scans.
Results. In comparative analysis, the AdaBoost model outperformed standard statistical methods in identifying Grade 3 hepatocellular carcinoma. Sensitivity was higher by 15.4%, specificity by 3.1%, and diagnostic accuracy by 15.31%.
Conclusion. The use of machine-learning based radiomics is a promising noninvasive method for evaluating the histological hepatocellular carcinoma grade. The obtained results may be applied in a variety of clinical and research contexts.
About the Authors
L. A. SannikovaRussian Federation
Lyudmila A. Sannikova – Resident Physician at the Department of Radiology and Magnetic Resonance Imaging
27, Bol'shaya Serpukhovskaia str., Moscow, 117997
A. A. Ustalov
Russian Federation
Andrey A. Ustalov – Junior Researcher at the Department of Radiology and Magnetic Resonance Imaging
27, Bol'shaya Serpukhovskaia str., Moscow, 117997
S. A. Shmeleva
Russian Federation
Sofiia A. Shmeleva – Resident Physician at the Department of Radiology and Magnetic Resonance Imaging
27, Bol'shaya Serpukhovskaia str., Moscow, 117997
M. Yu. Shantarevich
Russian Federation
Mariia Yu. Shantarevich – Cand. of Sci. (Med.), Radiologist at the Department of Radiology
27, Bol'shaya Serpukhovskaia str., Moscow, 117997
E. V. Kondratyev
Russian Federation
Evgeny V. Kondratyev – Cand. of Sci. (Med.), Head of the Radiology Department
27, Bol'shaya Serpukhovskaia str., Moscow, 117997
References
1. Chao J., Zhao S., Sun H. Dedifferentiation of hepatocellular carcinoma: molecular mechanisms and therapeutic implications. Am. J. Transl. Res. 2020; 12 (5): 2099–2109.
2. Breder V.V., Kosyrev V.Y., Kudashkin N.E., Laktionov K.K. Hepatocellular carcinoma as a social and medical problem in the Russian Federation. Meditsinskiy sovet = Medical Council. 2016; 10: 10–18. https://doi.org/10.21518/2079-701X-2016-10-10-16 (In Russian)
3. Ahn J.C., Qureshi T.A., Singal A.G., Li D., Yang J.-D. Deep learning in hepatocellular carcinoma: current status and future perspectives. World J. Hepatol. 2021; 13 (12): 2039–2051. https://doi.org/10.4254/wjh.v13.i12.2039
4. Larrain C., Torres-Hernandez A., Larrain C. Artificial intelligence, machine learning, and deep learning in the diagnosis and management of hepatocellular carcinoma. Livers. 2024; 4 (1): 36–50. https://doi.org/10.3390/livers4010004
5. Feng J., Wang L., Wang Q., Qiu D., Chen H., Su X., Li Y., Xiao Y., Lin C. Current status and analysis of machine learning in hepatocellular carcinoma. J. Clin. Transl. Hepatol. 2023; 11 (5): 1184–1191. https://doi.org/10.14218/JCTH.2022.00077S
6. El-Serag H.B., Mason A.C. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med. 1999; 340 (10): 745–750. https://doi.org/10.1056/NEJM199903113401001
7. Zhang Z.-M., Huang Y., Liu G., Yu W., Xie Q., Chen Z., Huang G., Wei J., Zhang H., Chen D., Du H. Development of machine learning-based predictors for early diagnosis of hepatocellular carcinoma. Sci. Rep. 2024; 14 (1): 5274. https://doi.org/10.1038/s41598-024-51265-7
8. Li J., Wang J., Lei L., Yuan G., He S. The diagnostic performance of gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced multi-detector computed tomography in detecting hepatocellular carcinoma: a meta-analysis of eight prospective studies. Hepatobiliary-Pancreas. 2019; 29 (12): 6519–6528. https://doi.org/10.1007/s00330-019-06294-6
9. Hanna R.F., Miloushev V.Z., Tang A., Finklestone L.A., Brejt S.Z., Sandhu R.S., Santillan C.S., Wolfson T., Gamst A., Sirlin C.B. Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular. Abdominal Radiology. 2016; 41 (1): 71–90. https://doi.org/10.1007/s00261-015-0592-8
10. Qin X., Hu X., Xiao W., Zhu C., Ma Q., Zhang C. Preoperative evaluation of hepatocellular carcinoma differentiation using contrast-enhanced ultrasound-based deep-learning radiomics model. 2023. J. Hepatocell. Carcinoma. 2023; 10: 157–168. https://doi.org/10.2147/JHC.S400166
11. Martins-Filho S.N., Paiva C., Azevedo R.S., Alves V.A.F. Histological grading of hepatocellular carcinoma – a systematic review of literature. Front. Med. 2017; 4: 193. https://doi.org/10.3389/fmed.2017.00193
12. Kondratyev E.V., Shmeleva S.A., Ustalov A.A., Gurina V.I., Karmazanovsky G.G. Theoretical basics of abdominal СT radiomics: a review. Diagnostic Radiology and Radiotherapy. 2025; 16 (1): 33–46. https://doi.org/10.22328/2079-5343-2025-16-1-33-46 (In Russian)
13. Parmar C., Grossmann P., Bussink J., Lambin P., Aerts H.J.W.L. Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 2015; 5: 13087. https://doi.org/10.1038/srep13087
14. McCague C., Ramlee S., Reinius M., Selby I., Hulse D., Piyatissa P., Bura V., Crispin-Ortuzar M., Sala E., Woitek R. Introduction to radiomics for a clinical audience. Clin. Radiol. 2023; 78 (2): 83–98. https://doi.org/10.1016/j.crad.2022.08.149
15. Timmeren J.E., Cester D., Tanadini-Lang S., Alkadhi H., Baessler B. Radiomics in medical imaging – “how-to” guide and critical reflection. Insights Imaging. 2020; 11 (1): 91. https://doi.org/10.1186/s13244-020-00887-2
16. Majumder S., Katz S., Kontos D., Roshkovan L. State of the art: radiomics and radiomics-related artificial intelligence on the road to clinical translation. BJR Open. 2023; 6 (1): tzad004. https://doi.org/10.1093/bjro/tzad004
17. Karmazanovsky G.G., Kondratyev E.V., Gruzdev I.S., Tikhonova V.S., Shantarevich M.Yu., Zamyatina K.A., Stashkiv V.I., Revishvili A.Sh. Modern radiation diagnostics and intelligent personalized technologies in hepatopancreatology. Annals of the Russian Academy of Medical Sciences. 2022; 77 (4): 245–253. https://doi.org/10.15690/vramn2053. (In Russian)
Supplementary files
Review
For citations:
Sannikova L.A., Ustalov A.A., Shmeleva S.A., Shantarevich M.Yu., Kondratyev E.V. Assessment of a CT-based radiomics model for predicting hepatocellular carcinoma grade. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2025;30(4):44-51. (In Russ.) https://doi.org/10.16931/1995-5464.2025-4-44-51
























