Preview

Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery

Advanced search

Intraductal papillary mucinous neoplasms of the pancreas associated with ductal carcinoma as two distinct clinical entities

https://doi.org/10.16931/1995-5464.2025-3-53-62

Abstract

Aim. To analyze current perspectives on the concept of malignant progression in intraductal papillary mucinous neoplasms (IPMNs) of the pancreas and to outline the most prospective research trends in this area.

Materials and Methods. A literature review and an analysis of data from the cancer registry of Moscow were conducted. Results. The paper summarizes key molecular genetic studies from recent decades. Using surgical specimen data coded according to ICD-O in Moscow for the years 2023–2024, the main challenges in the histopathological diagnosis of IPMN with associated invasive carcinoma are discussed.

Conclusion. Genomic alterations in IPMNs of the pancreas, as background lesions for pancreatic ductal adenocarcinoma, reflect their genetic heterogeneity and carry significant clinical implications for understanding the polyclonal theory of carcinogenesis, as well as for identifying novel therapeutic targets and approaches. The invasive component associated with IPMN is frequently genetically independent based on its molecular profile.

About the Authors

O. V. Paklina
Moscow Clinical Scientific Center named after A.S. Loginov; A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation
Russian Federation

Oksana V. Paklina – Doct. of Sci. (Med.), Scientific Consultant of the Laboratory of Innovative Pathomorphology; Chief Researcher at the Electron Microscopy Laboratory of the Department of Pathological Anatomy

 86, Sh. Entuziastov, Moscow, 111123

27, str. Bolshaya Serpukhovskaya, Moscow, 115093



K. K. Noskova
Moscow Clinical Scientific Center named after A.S. Loginov
Russian Federation

Karina K. Noskova – Cand. of Sci. (Med.), Head of the Department of Clinical and Laboratory Diagnostics

86, Sh. Entuziastov, Moscow, 111123



I. S. Abramov
Moscow Clinical Scientific Center named after A.S. Loginov
Russian Federation

Biologist of the Moscow City Medical and Genetic Center

86, Sh. Entuziastov, Moscow, 111123



N. A. Bodunova
Moscow Clinical Scientific Center named after A.S. Loginov
Russian Federation

Natalia A. Bodunova – Cand. of Sci. (Med.), Head of the Center for Personalized Medicine, Director of the Moscow City Medical and Genetic Center

86, Sh. Entuziastov, Moscow, 111123



N. A. Savelov
Moscow City Oncology Hospital No. 62 of the Moscow Healthcare Department
Russian Federation

Nikita A. Savelov – Head of the City Center for Pathoanatomic Diagnostics and Molecular Genetics

27, bld. 1-30, Istra settlement, Krasnogorsk urban district, Moscow region, 143515



References

1. Adsay V., Mino-Kenudson M., Furukawa T., Basturk O., Zamboni G., Marchegiani G., Bassi C., Salvia R., Malleo G., Paiella S., Wolfgang C., Matthaei H., Offerhaus G., Adham M., Bruno M., Reid M., Krasinskas A., Klöppel G., Ohike N., Takuma TajiriKee Taek Jang, Roa J., Allen P., Fernández-Del Castillo C., Jin Young Jang, Klimstra D., Hruban R. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona Consensus Meeting. Ann. Surg. 2016; 263 (1): 162–177. https://doi.org/10.1097/SLA.0000000000001173

2. Digestive System Tumours. WHO Classification of Tumours, 5th Edition. 2019. V. 1. https://publications.iarc.fr/Book-AndReport-Series/Who-Classification-Of-Tumours/DigestiveSystem-Tumours-2019

3. Felsenstein M., Hruban R.H., Wood L.D. New developments in the molecular mechanisms of pancreatic tumorigenesis. Adv. Anat. Pathol. 2018; 25 (2): 131–142. https://doi.org/10.1097/PAP.0000000000000172

4. Amato E., Molin M., Mafficini A., Jun Yu, Malleo G., Rusev B., Fassan M., Antonello D., Sadakari Y., Castelli P., Zamboni G., Maitra A., Salvia R., Hruban R., Bassi C., Capelli P., Lawlor, Goggins M., Scarpa A. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J. Pathol. 2014; 233 (3): 217–227. https://doi.org/10.1002/path.4344

5. Sakamoto H., Kuboki Y., Hatori T., Yamamoto M., Sugiyama M., Shibata N., Shimizu K., Shiratori K., Furukawa T. Clinicopathological significance of somatic RNF43 mutation and aberrant expression of ring finger protein 43 in intraductal papillary mucinous neoplasms of the pancreas. Mod. Pathol. 2015; 28 (2): 261–267. https://doi.org/10.1038/modpathol.2014.98

6. Kuboki Y., Shimizu K., Hatori T., Yamamoto M., Shibata N., Shiratori K., Furukawa T. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. Pancreas. 2015; 44 (2): 227–235. https://doi.org/10.1097/mpa.0000000000000253

7. Abe K., Suda K., Arakawa A., Yamasaki S., Sonoue H., Mitani K., Nobukawa B. Different patterns of p16INK4A and p53 protein expressions in intraductal papillary-mucinous neoplasms and pancreatic intraepithelial neoplasia. Pancreas. 2007; 34 (1): 85–91. https://doi.org/10.1097/01.mpa.0000240608.56806.0a

8. Inoue H., Furukawa T., Sunamura M., Takeda K., Matsuno S., Horii A. Exclusion of SMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis. Genes Chromosomes Cancer. 2001; 31 (3): 295–299. https://doi.org/10.1002/gcc.1147

9. Yamaguchi K., Kanemitsu S., Hatori T., Maguchi H., Shimizu Y., Tada M., Nakagohri T., Hanada K., Osanai M., Noda Y., Nakaizumi A., Furukawa T., Ban S., Nobukawa B., Kato Y., Tanaka M. Pancreatic ductal adenocarcinoma derived from IPMN and pancreatic ductal adenocarcinoma concomitant with IPMN. Pancreas. 2011; 40 (4): 571–580. https://doi.org/10.1097/mpa.0b013e318215010c

10. Basturk O., Hong S.M., Wood L.D., Adsay N.V., AlboresSaavedra J., Biankin A.V., Brosens L.A., Fukushima N., Goggins M., Hruban R.H., Kato Y., Klimstra D.S., Klöppel G., Krasinskas A., Longnecker D.S., Matthaei H., Offerhaus G.J., Shimizu M., Takaori K., Terris B., Yachida S., Esposito I., Furukawa T. A Revised classification system and recommendations from the Baltimore Consensus Meeting for neoplastic precursor lesions in the pancreas. Am. J. Surg. Pathol. 2015; 39 (12): 1730– 1741. https://doi.org/10.1097/PAS.0000000000000533

11. Pitman M.B., Centeno B.A., Reid M.D., Siddiqui M.T., Layfield L.J., Perez-Machado M., Weynand B., Stelow E.B., Lozano M.D., Fukushima N., Cree I.A., Mehrotra R., Schmitt F.C., Field A.S. The World Health Organization reporting system for pancreaticobiliary cytopathology. Acta Cytol. 2023; 67 (3): 304–320. https://doi.org/10.1159/000527912

12. Hoda R., Arpin R., Rosenbaum M., Pitman M. Risk of malignancy associated with diagnostic categories of the proposed World Health Organization international system for reporting pancreaticobiliary cytopathology. Cancer Cytopathol. 2022; 130 (3): 195–201. https://doi.org/10.1002/cncy.22514

13. Serinelli S., Khurana K. Intraductal papillary mucinous neoplasms of the pancreas: сytologic-histologic correlation study and evaluation of the cytologic accuracy in identifying high-grade dysplasia/invasive adenocarcinoma. Cytojournal. 2024; 21: 6. https://doi.org/10.25259/Cytojournal_71_2023

14. Wang Q.X., Xiao J., Orange M., Zhang H., Zhu Y.Q. EUSGuided FNA for diagnosis of pancreatic cystic lesions: a metaanalysis. Cell Physiol. Biochem. 2015; 36 (3): 1197–1209. https://doi.org/10.1159/000430290

15. Guzmán-Calderón E., Md B.M., Casellas J.A., Aparicio J.R. Intracystic glucose levels appear useful for diagnosis of pancreatic cystic lesions: a systematic review and meta-analysis. Dig. Dis. Sci. 2022; 67 (6): 2562–2570. https://doi.org/10.1007/s10620-021-07035-w

16. Ribaldone D.G., Bruno M., Gaia S., Cantamessa A., Bragoni A., Caropreso P., Sacco M., Fagoonee S., Saracco G.M., De Angelis C. Differential diagnosis of pancreatic cysts: a prospective study on the role of intra-cystic glucose concentration. Dig. Liver Dis. 2020; 52 (9): 1026–1032. https://doi.org/10.1016/j.dld.2020.06.038

17. Gorris M., Dijk F., Farina A., Halfwerk J.B., Hooijer G.K., Lekkerkerker S.J., Voermans R.P., Wielenga M.C., Besselink M.G., van Hooft J.E. Validation of combined carcinoembryonic antigen and glucose testing in pancreatic cyst fluid to differentiate mucinous from non-mucinous cysts. Surg. Endosc. 2023; 37 (5): 3739–3746. https://doi.org/10.1007/s00464-022-09822-6

18. Sinha S.R., Mondal S., Akhtar M.J., Singh R.K., Prakash P. Evaluating carcinoembryonic antigen and glucose levels in pancreatic cyst fluid for mucinous versus non-mucinous differentiation. Cureus. 2024; 16 (6): e62686. https://doi.org/10.7759/cureus.62686

19. McCarty T.R., Paleti S., Rustagi T. Molecular analysis of EUSacquired pancreatic cyst fluid for KRAS and GNAS mutations for diagnosis of intraductal papillary mucinous neoplasia and mucinous cystic lesions: a systematic review and meta-analysis. Gastrointest. Endosc. 2021; 93 (5): 1019–1033.e5. https://doi.org/10.1016/j.gie.2020.12.014

20. Oldfield L.E., Connor A.A., Gallinger S. Molecular events in the natural history of pancreatic cancer. Trends Cancer. 2017; 3 (5): 336–346. https://doi.org/10.1016/j.trecan.2017.04.005

21. Marchegiani G., Mino-Kenudson M., Ferrone C.R., MoralesOyarvide V., Warshaw A.L., Lillemoe K.D., Castillo C.F. Patterns of recurrence after resection of IPMN: who, when, and how? Ann. Surg. 2015; 262 (6): 1108–1114. https://doi.org/10.1097/sla.0000000000001008

22. Felsenstein M., Noë M., Masica D.L., Hosoda W., Chianchiano P., Fischer C.G., Lionheart G., Brosens L.A.A., Pea A., Yu J., Gemenetzis G., Groot V.P., Makary M.A., He J., Weiss M.J., Cameron J.L., Wolfgang C.L., Hruban R.H., Roberts N.J., Karchin R., Goggins M.G., Wood L.D. IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut. 2018; 67 (9): 1652–1662. https://doi.org/10.1136/gutjnl-2017-315062

23. Noë M., Niknafs N., Fischer C.G., Hackeng W.M., Beleva Guthrie V., Hosoda W., Debeljak M., Papp E., Adleff V., White J.R., Luchini C., Pea A., Scarpa A., Butturini G., Zamboni G., Castelli P., Hong S.M., Yachida S., Hiraoka N., Gill A.J., Samra J.S., Offerhaus G.J.A., Hoorens A., Verheij J., Jansen C., Adsay N.V., Jiang W., Winter J., Albores-Saavedra J., Terris B., Thompson E.D., Roberts N.J., Hruban R.H., Karchin R., Scharpf R.B., Brosens L.A.A., Velculescu V.E., Wood L.D. Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nat. Commun. 2020; 11 (1): 4085. https://doi.org/10.1038/s41467-020-17917-8

24. Makohon-Moore A.P., Matsukuma K., Zhang M., Reiter J.G., Gerold J.M., Jiao Y., Sikkema L., Attiyeh M.A., Yachida S., Sandone C., Hruban R.H., Klimstra D.S., Papadopoulos N., Nowak M.A., Kinzler K.W., Vogelstein B., IacobuzioDonahue C.A. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature. 2018; 561 (7722): 201–205. https://doi.org/10.1038/s41586-018-0481-8

25. Yachida S., Jones S., Bozic I., Antal T., Leary R., Fu B., Kamiyama M., Hruban R.H., Eshleman J.R., Nowak M.A., Velculescu V.E., Kinzler K.W., Vogelstein B., IacobuzioDonahue C.A. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010; 467 (7319): 1114–1117. https://doi.org/10.1038/nature09515

26. Weyn C., Van Raemdonck S., Dendooven R., Maes V., Zwaenepoel K., Lambin S., Pauwels P. Clinical performance evaluation of a sensitive, rapid low-throughput test for KRAS mutation analysis using formalin-fixed, paraffin-embedded tissue samples. BMC Cancer. 2017; 17 (1): 139. https://doi.org/10.1186/s12885-017-3112-0

27. Moris D., Damaskos C., Spartalis E., Papalampros A., Vernadakis S., Dimitroulis D., Griniatsos J., Felekouras E., Nikiteas N. Updates and critical evaluation on novel biomarkers for the malignant progression of intraductal papillary mucinous neoplasms of the pancreas. Anticancer Res. 2017; 37 (5): 2185–2194. https://doi.org/10.21873/anticanres.11553

28. Singhi A.D., McGrath K., Brand R.E., Khalid A., Zeh H.J., Chennat J.S., Fasanella K.E., Papachristou G.I., Slivka A., Bartlett D.L., Dasyam A.K., Hogg M., Lee K.K., Marsh J.W., Monaco S.E., Ohori N.P., Pingpank J.F., Tsung A., Zureikat A.H., Wald A.I., Nikiforova M.N. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut. 2018; 67 (12): 2131–2141. https://doi.org/10.1136/gutjnl-2016-313586

29. Springer S., Wang Y., Dal Molin M., Masica D.L., Jiao Y., Kinde I., Blackford A., Raman S.P., Wolfgang C.L., Tomita T., Niknafs N., Douville C., Ptak J., Dobbyn L., Allen P.J., Klimstra D.S., Schattner M.A., Schmidt C.M., YipSchneider M., Cummings O.W., Brand R.E., Zeh H.J., Singhi A.D., Scarpa A., Salvia R., Malleo G., Zamboni G., Falconi M., Jang J.Y., Kim S.W., Kwon W., Hong S.M., Song K.B., Kim S.C., Swan N., Murphy J., Geoghegan J., Brugge W., Fernandez-Del Castillo C., Mino-Kenudson M., Schulick R., Edil B.H., Adsay V., Paulino J., van Hooft J., Yachida S., Nara S., Hiraoka N., Yamao K., Hijioka S., van der Merwe S., Goggins M., Canto M.I., Ahuja N., Hirose K., Makary M., Weiss M.J., Cameron J., Pittman M., Eshleman J.R., Diaz L.A. Jr, Papadopoulos N., Kinzler K.W., Karchin R., Hruban R.H., Vogelstein B., Lennon A.M. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015; 149 (6): 1501–1510. https://doi.org/10.1053/j.gastro.2015.07.041

30. Agostini A., Piro G., Inzani F., Quero G., Esposito A., Caggiano A., Priori L., Larghi A., Alfieri S., Casolino R., Scaglione G., Tondolo V., Cammarota G., Ianiro G., Corbo V., Biankin A.V., Tortora G., Carbone C. Identification of spatiallyresolved markers of malignant transformation in intraductal papillary mucinous neoplasms. Nat. Commun. 2024; 15 (1): 2764. https://doi.org/10.1038/s41467-024-46994-2

31. Bernard V., Semaan A., Huang J., San Lucas F.A., Mulu F.C., Stephens B.M., Guerrero P.A., Huang Y., Zhao J., Kamyabi N., Sen S., Scheet P.A., Taniguchi C.M., Kim M.P., Tzeng C.W., Katz M.H., Singhi A.D., Maitra A., Alvarez H.A. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression 2018. Clin. Cancer Res. 2019; 25 (7): 2194–2205. https://doi.org/10.1158/1078-0432.CCR-18-1955

32. Hernandez-Barco Y.G., Bardeesy N., Ting D.T. No cell left unturned: intraductal papillary mucinous neoplasm heterogeneity comment. Clin. Cancer Res. 2019; 25 (7): 2027–2029. https://doi.org/10.1158/1078-0432.CCR-18-3877

33. Kwan M.C., Zhang L.M. Pancreas fine needle aspiration: current and future impact on patient care. Surg. Pathol. Clin. 2024; 17(3): 441–452. https://doi.org/10.1016/j.path.2024.04.007.


Review

For citations:


Paklina O.V., Noskova K.K., Abramov I.S., Bodunova N.A., Savelov N.A. Intraductal papillary mucinous neoplasms of the pancreas associated with ductal carcinoma as two distinct clinical entities. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2025;30(3):53-62. (In Russ.) https://doi.org/10.16931/1995-5464.2025-3-53-62

Views: 211

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-5464 (Print)
ISSN 2408-9524 (Online)