Preview

Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery

Advanced search

Algorithms for planning the trajectories of electrode insertion for radiofrequency ablation in robotic surgery

https://doi.org/10.16931/1995-5464.2024-2-123-133

Abstract

   Aim. To improve the efficiency of radiofrequency ablation for large tumors by computer-aided modeling and planning of robotic surgery.

   Materials and methods. A set of algorithms for planning robotic electrode insertion was developed.

   Results. The evaluation of the technique proved its potential for achieving complete tumor processing and trajectory building with all feasible constraints.

   Conclusion. The set of algorithms provides computer-aid planning for sequential placement of radiofrequency ablation needles during intervention.

About the Authors

A. S. Pershin
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Andrey S. Pershin, Laboratory Research Assistant

TECHNOBIOMED Research Institute; Laboratory of Medical and Robotic Digital Technologies

127006; 4, Dolgorukovskaya str.; Moscow



D. D. Klimov
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Daniil D. Klimov, Cand. of Sci. (Techn.), Head of the Laboratory

TECHNOBIOMED Research Institute; Laboratory of Medical and Robotic Digital Technologies

127006; 4, Dolgorukovskaya str.; Moscow



L. S. Prokhorenko
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Leonid S. Prokhorenko, Laboratory Junior Researcher

TECHNOBIOMED Research Institute; Laboratory of Medical and Robotic Digital Technologies

127006; 4, Dolgorukovskaya str.; Moscow



E. V. Grigoryeva
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Elena V. Grigorieva, Doct. of Sci. (Med.), Head of the Unit

University Clinic; Diagnostic Radiology Unit

127006; 4, Dolgorukovskaya str.; Moscow



D. A. Astakhov
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Dmitry A. Astakhov, Doct. of Sci. (Med.), Associate Professor, Head of Unit

Department of Surgery and Surgical Technologies; Oncology Unit

127006; 4, Dolgorukovskaya str.; Moscow



K. A. Tupikin
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Kirill A. Tupikin, Cand. of Sci. (Med.), Assistant

Department of Surgery and Surgical Technologies

127006; 4, Dolgorukovskaya str.; Moscow



Yu. V. Podurayev
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Yuri V. Poduraev, Doct. of Sci. (Techn.), Director of the Institute

TECHNOBIOMED Research Institute

127006; 4, Dolgorukovskaya str.; Moscow



P. I. Rasner
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Pavel I. Rasner, Doct. of Sci. (Med.), Chief Physician

University Clinic

127006; 4, Dolgorukovskaya str.; Moscow



D. N. Panchenkov
Russian University of Medicine of Ministry of Health of Russian Federation
Russian Federation

Dmitry N. Panchenkov, Doct. of Sci. (Med.), Professor, Head of Department, Head of Laboratory

Department of Surgery and Surgical Technologies; , TECHNOBIOMED Research Institute; Laboratory of Minimally Invasive Surgery

127006; 4, Dolgorukovskaya str.; Moscow



References

1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68 (6): 394–424. doi: 10.3322/caac.21492. Erratum in: CA Cancer J. Clin. 2020; 70 (4): 313. PMID: 30207593

2. Forner A., Reig M., Bruix J. Hepatocellular carcinoma. Lancet. 2018; 391 (10127): 1301–1314. doi: 10.1016/S0140-6736(18)30010-2

3. Konstantinidis I.T., Raoof M., Zheleva V., Lafaro K., Lau C., Fong Y., Lee B. Multivisceral robotic liver surgery: feasible and safe. J. Robotic Surg. 2020; 14 (3): 503–507. doi: 10.1007/s11701-019-01017-x

4. Berelavichus S., Kriger A., Kaldarov A., Panteleev V., Raevskaya M. Robotic surgery in treatment of retroperitoneal tumors. Comparative single center study. J. Robotic Surg. 2021; 15 (3): 363–367. doi: 10.1007/s11701-020-01114-2

5. Cho Y.K., Kim J.K., Kim W.T., Chung J.W. Hepatic resection versus radiofrequency ablation for very early stage hepatocellular carcinoma: a Markov model analysis. Hepatology. 2010; 51 (4): 1284–1290. doi: 10.1002/hep.23466

6. Glassberg M.B., Ghosh S., Clymer J.W., Qadeer R.A., Ferko N.C., Sadeghirad B. Microwave ablation compared with radiofrequency ablation for treatment of hepatocellular carcinoma and liver metastases : a systematic review and meta-analysis. Onco Targets Ther. 2019; 12: 6407–6438. doi: 10.2147/ott.s204340

7. Bailey C.W., Sydnor M.K. Current state of tumor ablation therapies. Dig. Dis. Sci. 2019; 64 (4): 951–958. doi: 10.1007/s10620-019-05514-9

8. Baegert C., Villard C., Schreck P., Soler L. Multi-criteria trajectory planning for hepatic radiofrequency ablation. Lecture Notes Comp. Sci. 2007; 10 (Pt 2): 676–684. doi: 10.1007/978-3-540-75759-7_82

9. Seitel A., Engel M., Sommer C.M., Radeleff B.A., Essert-Villard C., Baegert C., Fangerau M., Fritzsche K.H., Yung K., Meinzer H.-P., Maier-Hein L. Computer-assisted trajectory planning for percutaneous needle insertions. Med. Phys. 2011; 38 (6 Part 1): 3246–3259. URL: https://pubmed.ncbi.nlm.nih.gov/21815399/

10. Schumann C., Bieberstein J., Trumm C., Schmidt D., Bruners P., Niethammer M. Fast automatic path proposal computation for hepatic needle placement. Med. Image 2010: Visualiz Image-Guided Procedures Model Proc. SPIE 2010; 7625: 76251J. doi: 10.1117/12.844186

11. Prokhorenko L., Klimov D., Vorotnikov A., Mishchenkov D., Poduraev Y. The concept of spatial motion restriction zones in a robot-assisted surgical system. J. Robotic Surg. 2022; 16 (2): 445–452. doi: 10.1007/s11701-021-01261-0

12. Wang K.F., Pan W., Wang K.F., Wang G.F., Madhava P., Pan H.M., Kong D-X., Liu X.G. Geometric optimization of a mathematical model of radiofrequency ablation in hepatic carcinoma. Asian Pacific J. Cancer Prev. 2013; 14 (10): 6151–6158. doi: 10.7314/apjcp.2013.14.10.6151

13. Liu S., Xia Z., Liu J., Xu J., Ren H., Lu T., Yang X. Automatic multiple-needle surgical planning of robotic-assisted microwave coagulation in large liver tumor therapy. PLoS One. 2016; 11 (3): e0149482. doi: 10.1371/journal.pone.0149482

14. Ren H., Campos-Nanez E., Yaniv Z., Banovac F., Abeledo H., Hata N., Cleary K. Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J. Biomed. Health Inform. 2014; 18 (3): 920–928. doi: 10.1109/jbhi.2013.2287202

15. Chen R., Jiang T., Lu F., Wang K., Kong D. Semiautomatic radiofrequency ablation planning based on constrained clustering process for hepatic tumors. IEEE Trans. Biomed. Eng. 2017; 65 (3): 645–657. doi: 10.1109/tbme.2017.2712161

16. Liu P., Qin J., Duan B., Wang Q., Tan X., Zhao B., Libao Jonnathan P., Chui C.-K., Heng P.-A. Overlapping radiofrequency ablation planning and robot-assisted needle insertion for large liver tumors. Int. J. Med. Robot. Comput. Assist. Surg. 2019; 15 (1): e1952. doi: 10.1002/rcs.1952

17. Liang L., Cool D., Kakani N., Wang G., Ding H., Fenster A. Automatic radiofrequency ablation planning for liver tumors with multiple constraints based on set covering. IEEE Trans. Med. Imaging. 2019; 39 (5): 1459–1471. doi: 10.1109/tmi.2019.2950947

18. Liang L., Cool D., Kakani N., Wang G., Ding H., Fenster A. Development of a multi-objective optimized planning method for microwave liver tumor ablation. Lecture Notes Comp. Sci. 2019; 11768: 110–118. doi: 10.1007/978-3-030-32254-0_13

19. Vorotnikov A., Buinov M.A., Bushuev S.V., Poduraev Y.V., Chunihin A.A. Standard deviation from the average cutting velocity as a criterion for comparing robot trajectories and manual movements of a doctor for performing surgical operations in maxillofacial surgery. Int. J. Mech. Eng. Robot. Res. 2018; 7 (3): 319–323. doi: 10.18178/ijmerr.7.3.319-323

20. Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory. 1982; 28 (2): 129–137. doi: 10.1109/TIT.1982.1056489.

21. Villard C., Soler L., Gangi A. Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics. Computer Methods in Biomech. Biomed. Engin. 2005; 8 (4): 215–227. doi: 10.1080/10255840500289988

22. Nelder J.A., Mead R. A simplex method for function minimization. Computer J. 1965; 7 (4): 308–313. doi: 10.1093/comjnl/7.4.308

23. https://www.slicer.org/ https://www.slicer.org/ 3D Slicer image computing platform. Updated on 19/02/2024

24. https://www.blender.org/download/ Updated on 05/22/2018

25. 3D-IRCADb (3D Image Reconstruction for Comparison of Algorithms Database) https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/ Updated on 2021


Review

For citations:


Pershin A.S., Klimov D.D., Prokhorenko L.S., Grigoryeva E.V., Astakhov D.A., Tupikin K.A., Podurayev Yu.V., Rasner P.I., Panchenkov D.N. Algorithms for planning the trajectories of electrode insertion for radiofrequency ablation in robotic surgery. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2024;29(2):123-133. (In Russ.) https://doi.org/10.16931/1995-5464.2024-2-123-133

Views: 220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-5464 (Print)
ISSN 2408-9524 (Online)